The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Signed Selmer groups over p -adic Lie extensions”

On a conjecture of Watkins

Neil Dummigan (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Watkins has conjectured that if R is the rank of the group of rational points of an elliptic curve E over the rationals, then 2 R divides the modular parametrisation degree. We show, for a certain class of E , chosen to make things as easy as possible, that this divisibility would follow from the statement that a certain 2 -adic deformation ring is isomorphic to a certain Hecke ring, and is a complete intersection. However, we show also that the method developed by Taylor, Wiles and others,...

Integrable functions for the Bernoulli measures of rank 1

Hamadoun Maïga (2010)

Annales mathématiques Blaise Pascal

Similarity:

In this paper, following the p -adic integration theory worked out by A. F. Monna and T. A. Springer [, ] and generalized by A. C. M. van Rooij and W. H. Schikhof [, ] for the spaces which are not σ -compacts, we study the class of integrable p -adic functions with respect to Bernoulli measures of rank 1 . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.

Towards a theory of some unbounded linear operators on p -adic Hilbert spaces and applications

Toka Diagana (2005)

Annales mathématiques Blaise Pascal

Similarity:

We are concerned with some unbounded linear operators on the so-called p -adic Hilbert space 𝔼 ω . Both the Closedness and the self-adjointness of those unbounded linear operators are investigated. As applications, we shall consider the diagonal operator on 𝔼 ω , and the solvability of the equation A u = v where A is a linear operator on 𝔼 ω .

A note on some expansions of p-adic functions

Grzegorz Szkibiel (1992)

Acta Arithmetica

Similarity:

Introduction. Recently J. Rutkowski (see [3]) has defined the p-adic analogue of the Walsh system, which we shall denote by ( ϕ ) m . The system ( ϕ ) m is defined in the space C(ℤₚ,ℂₚ) of ℂₚ-valued continuous functions on ℤₚ. J. Rutkowski has also considered some questions concerning expansions of functions from C(ℤₚ,ℂₚ) with respect to ( ϕ ) m . This paper is a remark to Rutkowski’s paper. We define another system ( h ) n in C(ℤₚ,ℂₚ), investigate its properties and compare it to the system defined by Rutkowski....

The integral logarithm in Iwasawa theory : an exercise

Jürgen Ritter, Alfred Weiss (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let l be an odd prime number and H a finite abelian l -group. We describe the unit group of Λ [ H ] (the completion of the localization at l of l [ [ T ] ] [ H ] ) as well as the kernel and cokernel of the integral logarithm L : Λ [ H ] × Λ [ H ] , which appears in non-commutative Iwasawa theory.

Anticyclotomic Iwasawa theory of CM elliptic curves

Adebisi Agboola, Benjamin Howard (2006)

Annales de l’institut Fourier

Similarity:

We study the Iwasawa theory of a CM elliptic curve E in the anticyclotomic Z p -extension of the CM field, where p is a prime of good, ordinary reduction for E . When the complex L -function of E vanishes to even order, Rubin’s proof of the two variable main conjecture of Iwasawa theory implies that the Pontryagin dual of the p -power Selmer group over the anticyclotomic extension is a torsion Iwasawa module. When the order of vanishing is odd, work of Greenberg show that it is not a torsion...