Displaying similar documents to “Generic Nekhoroshev theory without small divisors”

Elementary linear algebra for advanced spectral problems

Johannes Sjöstrand, Maciej Zworski (2007)

Annales de l’institut Fourier

Similarity:

We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators...

Periodic conservative solutions of the Camassa–Holm equation

Helge Holden, Xavier Raynaud (2008)

Annales de l’institut Fourier

Similarity:

We show that the periodic Camassa–Holm equation u t - u x x t + 3 u u x - 2 u x u x x - u u x x x = 0 possesses a global continuous semigroup of weak conservative solutions for initial data u | t = 0 in H per 1 . The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure μ with μ ac = ( u 2 + u x 2 ) d x . The total energy is preserved by the solution.

Infinite periodic points of endomorphisms over special confluent rewriting systems

Julien Cassaigne, Pedro V. Silva (2009)

Annales de l’institut Fourier

Similarity:

We consider endomorphisms of a monoid defined by a special confluent rewriting system that admit a continuous extension to the completion given by reduced infinite words, and study from a dynamical viewpoint the nature of their infinite periodic points. For prefix-convergent endomorphisms and expanding endomorphisms, we determine the structure of the set of all infinite periodic points in terms of adherence values, bound the periods and show that all regular periodic points are attractors. ...

Invariant measures for the defocusing Nonlinear Schrödinger equation

Nikolay Tzvetkov (2008)

Annales de l’institut Fourier

Similarity:

We prove the existence and the invariance of a Gibbs measure associated to the defocusing sub-quintic Nonlinear Schrödinger equations on the disc of the plane 2 . We also prove an estimate giving some intuition to what may happen in 3 dimensions.