Displaying similar documents to “Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term”

Numerical simulation of a point-source initiated flame ball with heat losses

Jacques Audounet, Jean-Michel Roquejoffre, Hélène Rouzaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments...

Conservation schemes for convection-diffusion equations with Robin boundary conditions

Stéphane Flotron, Jacques Rappaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and...