Conservation schemes for convection-diffusion equations with Robin boundary conditions
Stéphane Flotron; Jacques Rappaz
- Volume: 47, Issue: 6, page 1765-1781
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topFlotron, Stéphane, and Rappaz, Jacques. "Conservation schemes for convection-diffusion equations with Robin boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.6 (2013): 1765-1781. <http://eudml.org/doc/273326>.
@article{Flotron2013,
abstract = {In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and we give some numerical examples which show the efficiency of the method.},
author = {Flotron, Stéphane, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; numerical conservation schemes; Robin boundary condition; convection-diffusion equations; Robin boundary conditions; finite element method; error bounds; stability; numerical experiment},
language = {eng},
number = {6},
pages = {1765-1781},
publisher = {EDP-Sciences},
title = {Conservation schemes for convection-diffusion equations with Robin boundary conditions},
url = {http://eudml.org/doc/273326},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Flotron, Stéphane
AU - Rappaz, Jacques
TI - Conservation schemes for convection-diffusion equations with Robin boundary conditions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 6
SP - 1765
EP - 1781
AB - In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and we give some numerical examples which show the efficiency of the method.
LA - eng
KW - finite elements; numerical conservation schemes; Robin boundary condition; convection-diffusion equations; Robin boundary conditions; finite element method; error bounds; stability; numerical experiment
UR - http://eudml.org/doc/273326
ER -
References
top- [1] P. Angot, V. Dolej, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volumenonconforming finite element method for nonlinear convection-diffusion problems, Applications of Mathematics, vol. 43. Kluwer Academic Publishers-Plenum Publishers (1998) 263–310. Zbl0942.76035MR1627989
- [2] I. Babuska and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, vol. 2. Elsevier (1991) 641–787. Zbl0875.65087MR1115240
- [3] A. Brooks and T. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg.32 (1982) 199–259 Zbl0497.76041MR679322
- [4] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Engrg.193 (2004) 1437–1453 Zbl1085.76033MR2068903
- [5] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Company (1978). Zbl0511.65078MR520174
- [6] R. Dautray and J.-L. Lions, Chap XVIII. Evolution Problems: Variational Methods, Math. Anal. and Numer. Methods Sci. Technology. vol. 5, Springer-Verlag, Heidelberg (2000) 467–680.
- [7] A. Ern and J.-L. Guermond, Elements finis: Théorie, applications, mise en oeuvre. Springer-Verlag (2002). Zbl0993.65123MR1933883
- [8] S. Flotron, Simulations numériques de phénomènes MHD-thermique avec interface libre dans l’électrolyse de l’aluminium, Ph.D. Thesis, EPFL, Switzerland, expected in (2013).
- [9] T. Hofer, Numerical Simulation and optimization of the alumina distribution in an aluminium electrolysis pot, Ph.D. Thesis, Thesis No. 5023, EPFL, Switzerland (2011).
- [10] A. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer Series in Computational Mathematics (1997). Zbl0803.65088MR1299729
- [11] R. Temam, Navier-Stokes equations. North-Holland (1984). Zbl0568.35002MR603444
- [12] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, New York (1997). Zbl0528.65052MR744045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.