Displaying similar documents to “On the Structure and the Development of the Sunspot Group”

Coulomb Interaction Effects on the Spin Polarization and Currents in Quantum Wires with Spin Orbit Interaction

Anton Heidar Thorolfsson, Andrei Manolescu, D.C. Marinescu, Vidar Gudmundsson (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We analyze the charge and spin distributions induced in an interacting electron system confined inside a semiconductor quantum wire with spin orbit interaction in the presence of an external magnetic field. The wire, assumed to be infinitely long, is obtained through lateral confinement in three different materials: GaAs, InAs, and InSb. The spin-orbit coupling, linear in the electron momentum is of both Rashba and Dresselhaus type. Within the Hartree-Fock approximation the many-body...

Vibrational properties of nanographene

Sandeep Kumar Singh, F.M. Peeters (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

The eigenmodes and the vibrational density of states of the ground state configuration of graphene clusters are calculated using atomistic simulations. The modified Brenner potential is used to describe the carbon-carbon interaction and carbon-hydrogen interaction in case of H-passivated edges. For a given configuration of the C-atoms the eigenvectors and eigenfrequencies of the normal modes are obtained after diagonalisation of the dynamical matrix whose elements are the second derivative...

A Stochastic Solver of the Generalized Born Model

Robert C. Harris, Travis Mackoy, Marcia O. Fenley (2013)

Molecular Based Mathematical Biology

Similarity:

A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes,...

Mesoscopic description of boundary effects in nanoscale heat transport

F.X. Àlvarez, V.A. Cimmelli, D. Jou, A. Sellitto (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the...

Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials

C. Y. Fong, M. Shaughnessy, L. Damewood, L. H. Yang (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Since the term “spintronics” was conceived in 1996, there have been several directions taken to develop new semiconductor-based magnetic materials for device applications using spin, or spin and charge, as the operational paradigm. Anticipating their integration into mature semiconductor technologies, one direction is to make use of materials involving Si. In this review, we focus on the progress made, since 2005, in Si-based half metallic spintronic materials. In addition to commenting...

Parallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-diffusion Equations

Yan Xie, Jie Cheng, Benzhuo Lu, Linbo Zhang (2013)

Molecular Based Mathematical Biology

Similarity:

rithms for solving the 3D electro-diffusion equations such as the Poisson-Nernst-Planck equations and the size-modified Poisson-Nernst-Planck equations in simulations of biomolecular systems in ionic liquid. A set of transformation methods based on the generalized Slotboom variables is used to solve the coupled equations. Calculations of the diffusion-reaction rate coefficients, electrostatic potential and ion concentrations for various systems verify the method’s validity and stability....

Progress in developing Poisson-Boltzmann equation solvers

Chuan Li, Lin Li, Marharyta Petukh, Emil Alexov (2013)

Molecular Based Mathematical Biology

Similarity:

This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nanoobjects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task...

A numerically efficient approach to the modelling of double-Qdot channels

A. Shamloo, A.P. Sowa (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab...