Displaying similar documents to “On bounded Dual-valued derivations on certain Banach algebras”

Weak * -continuous derivations in dual Banach algebras

M. Eshaghi-Gordji, A. Ebadian, F. Habibian, B. Hayati (2012)

Archivum Mathematicum

Similarity:

Let 𝒜 be a dual Banach algebra. We investigate the first weak * -continuous cohomology group of 𝒜 with coefficients in 𝒜 . Hence, we obtain conditions on 𝒜 for which H w * 1 ( 𝒜 , 𝒜 ) = { 0 } .

Aspects of the theory of derivations

Gerard Murphy (1994)

Banach Center Publications

Similarity:

We survey some old and new results in the theory of derivations on Banach algebras. Although our overview is broad ranging, our principal interest is in recent results concerning conditions on a derivation implying that its range is contained in the radical of the algebra.

Ideally factored algebras.

Amyari, M., Mirzavaziri, M. (2008)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

A note on fusion Banach frames

S. K. Kaushik, Varinder Kumar (2010)

Archivum Mathematicum

Similarity:

For a fusion Banach frame ( { G n , v n } , S ) for a Banach space E , if ( { v n * ( E * ) , v n * } , T ) is a fusion Banach frame for E * , then ( { G n , v n } , S ; { v n * ( E * ) , v n * } , T ) is called a fusion bi-Banach frame for E . It is proved that if E has an atomic decomposition, then E also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.

A converse to Amir-Lindenstrauss theorem in complex Banach spaces.

Ondrej F. K. Kalenda (2006)

RACSAM

Similarity:

We show that a complex Banach space is weakly Lindelöf determined if and only if the dual unit ball of any equivalent norm is weak* Valdivia compactum. We deduce that a complex Banach space X is weakly Lindelöf determined if and only if any nonseparable Banach space isomorphic to a complemented subspace of X admits a projectional resolution of the identity. These results complete the previous ones on real spaces.