Displaying similar documents to “A Class of Discrete Spectra of Non-Pisot Numbers”

Lattice points in some special three-dimensional convex bodies with points of Gaussian curvature zero at the boundary

Ekkehard Krätzel (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We investigate the number of lattice points in special three-dimensional convex bodies. They are called convex bodies of pseudo revolution, because we have in one special case a body of revolution and in another case even a super sphere. These bodies have lines at the boundary, where all points have Gaussian curvature zero. We consider the influence of these points to the lattice rest in the asymptotic representation of the number of lattice points.

Convergence conditions for Secant-type methods

Ioannis K. Argyros, Said Hilout (2010)

Czechoslovak Mathematical Journal

Similarity:

We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier...

Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation

Guillaume Legendre, Takéo Takahashi (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.