The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Topology Preserving Edge Contraction”

Geometric types of twisted knots

Mohamed Aït-Nouh, Daniel Matignon, Kimihiko Motegi (2006)

Annales mathématiques Blaise Pascal

Similarity:

Let K be a knot in the 3 -sphere S 3 , and Δ a disk in S 3 meeting K transversely in the interior. For non-triviality we assume that | Δ K | 2 over all isotopies of K in S 3 - Δ . Let K Δ , n ( S 3 ) be a knot obtained from K by n twistings along the disk Δ . If the original knot is unknotted in S 3 , we call K Δ , n a . We describe for which pair ( K , Δ ) and an integer n , the twisted knot K Δ , n is a torus knot, a satellite knot or a hyperbolic knot.

Two signed associahedra.

Burgiel, H., Reiner, V. (1998)

The New York Journal of Mathematics [electronic only]

Similarity:

Combinatorial lemmas for polyhedrons I

Adam Idzik, Konstanty Junosza-Szaniawski (2006)

Discussiones Mathematicae Graph Theory

Similarity:

We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also...

An equivalence criterion for 3-manifolds.

M. R. Casali (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

Within geometric topology of 3-manifolds (with or without boundary), a representation theory exists, which makes use of 4-coloured graphs. Aim of this paper is to translate the homeomorphism problem for the represented manifolds into an equivalence problem for 4-coloured graphs, by means of a finite number of graph-moves, called dipole moves. Moreover, interesting consequences are obtained, which are related with the same problem in the n-dimensional setting.