Some Properties of the Quasiasymptotic of Schwartz Distributions Part ii: Quasiasymptotic at 0
Stevan Pilipović (1988)
Publications de l'Institut Mathématique
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Stevan Pilipović (1988)
Publications de l'Institut Mathématique
Similarity:
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of...
B. Kopociński, E. Trybusiowa (1966)
Applicationes Mathematicae
Similarity:
Fabrizio Durante, Giovanni Puccetti, Matthias Scherer, Steven Vanduffel (2016)
Dependence Modeling
Similarity:
Ricardo Estrada (2010)
Banach Center Publications
Similarity:
It is well-known that any locally Lebesgue integrable function generates a unique distribution, a so-called regular distribution. It is also well-known that many non-integrable functions can be regularized to give distributions, but in general not in a unique fashion. What is not so well-known is that to many distributions one can associate an ordinary function, the function that assigns the distributional point value of the distribution at each point where the value exists, and that...
Grzegorz Łysik (1990)
Annales Polonici Mathematici
Similarity:
Matthev O. Ojo (2001)
Kragujevac Journal of Mathematics
Similarity:
Roman Sikorski (1961)
Studia Mathematica
Similarity:
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions................................................................................
A. Derdziński (1977)
Colloquium Mathematicae
Similarity:
G. Temple, Z. Zieleźny (1963)
Studia Mathematica
Similarity: