Displaying similar documents to “Perfect Matchings in a Class of Bipartite Graphs”

Mycielskians and matchings

Tomislav Doslić (2005)

Discussiones Mathematicae Graph Theory

Similarity:

It is shown in this note that some matching-related properties of graphs, such as their factor-criticality, regularizability and the existence of perfect 2-matchings, are preserved when iterating Mycielski's construction.

On a perfect problem

Igor E. Zverovich (2006)

Discussiones Mathematicae Graph Theory

Similarity:

We solve Open Problem (xvi) from Perfect Problems of Chvátal [1] available at ftp://dimacs.rutgers.edu/pub/perfect/problems.tex: Is there a class C of perfect graphs such that (a) C does not include all perfect graphs and (b) every perfect graph contains a vertex whose neighbors induce a subgraph that belongs to C? A class P is called locally reducible if there exists a proper subclass C of P such that every graph in P contains a local subgraph...

Distance perfectness of graphs

Andrzej Włoch (1999)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we propose a generalization of well known kinds of perfectness of graphs in terms of distances between vertices. We introduce generalizations of α-perfect, χ-perfect, strongly perfect graphs and we establish the relations between them. Moreover, we give sufficient conditions for graphs to be perfect in generalized sense. Other generalizations of perfectness are given in papers [3] and [7].

Comparing imperfection ratio and imperfection index for graph classes

Arie M. C. A. Koster, Annegret K. Wagler (2008)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB ( G ) coincides with the fractional stable set polytope QSTAB ( G ) . For all imperfect graphs G it holds that STAB ( G ) QSTAB ( G ) . It is, therefore, natural to use the difference between the two polytopes in order to decide how far an imperfect graph is away from being perfect. We discuss...