Displaying similar documents to “On idempotent elements in certain associative algebras”

Algebras standardly stratified in all orders

Fidel Hernández Advíncula, Eduardo do Nascimento Marcos (2007)

Colloquium Mathematicae

Similarity:

The aim of this work is to characterize the algebras which are standardly stratified with respect to any order of the simple modules. We show that such algebras are exactly the algebras with all idempotent ideals projective. We also deduce as a corollary a characterization of hereditary algebras, originally due to Dlab and Ringel.

A general form of non-Frobenius self-injective algebras

Andrzej Skowroński, Kunio Yamagata (2006)

Colloquium Mathematicae

Similarity:

Applying the classical work of Nakayama [Ann. of Math. 40 (1939)], we exhibit a general form of non-Frobenius self-injective finite-dimensional algebras over a field.

Idempotent operators on a finite chain.

Margalida Mas Grimalt, Joan Torrens, Tomasa Calvo, Marc Carbonell (1999)

Mathware and Soft Computing

Similarity:

This work is devoted to find and study some possible idempotent operators on a finite chain L. Specially, all idempotent operators on L which are associative, commutative and non-decreasing in each place are characterized. By adding one smoothness condition, all these operators reduce to special combinations of Minimum and Maximum.