Displaying similar documents to “A counterexample to a theorem of Argyros”

Local convergence of inexact Newton methods under affine invariant conditions and hypotheses on the second Fréchet derivative

Ioannis Argyros (1999)

Applicationes Mathematicae

Similarity:

We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...

On the convergence of Newton's method under ω*-conditioned second derivative

Ioannis K. Argyros, Saïd Hilout (2011)

Applicationes Mathematicae

Similarity:

We provide a new semilocal result for the quadratic convergence of Newton's method under ω*-conditioned second Fréchet derivative on a Banach space. This way we can handle equations where the usual Lipschitz-type conditions are not verifiable. An application involving nonlinear integral equations and two boundary value problems is provided. It turns out that a similar result using ω-conditioned hypotheses can provide usable error estimates indicating only linear convergence for Newton's...

Inexact Newton methods and recurrent functions

Ioannis K. Argyros, Saïd Hilout (2010)

Applicationes Mathematicae

Similarity:

We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore,...

Inexact Newton method under weak and center-weak Lipschitz conditions

I. K. Argyros, S. K. Khattri (2013)

Applicationes Mathematicae

Similarity:

The paper develops semilocal convergence of Inexact Newton Method INM for approximating solutions of nonlinear equations in Banach space setting. We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis. The results obtained compare favorably with earlier ones in at least the case of Newton's Method (NM). Numerical examples, where our convergence criteria are satisfied but the earlier ones are not, are also explored.

A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses

Ioannis K. Argyros (2005)

Applicationes Mathematicae

Similarity:

The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...