Displaying similar documents to “Nonstandard implication algebras”

Two Axiomatizations of Nelson Algebras

Adam Grabowski (2015)

Formalized Mathematics

Similarity:

Nelson algebras were first studied by Rasiowa and Białynicki- Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras” was adopted - which is now commonly used to show the correspondence with Nelson’s paper [14] on constructive logic with strong negation. By a Nelson algebra we mean an abstract algebra 〈L, T, -, ¬, →, ⇒, ⊔, ⊓〉 where L is the carrier, − is a quasi-complementation...

A short note on lattices allowing disjunctive reasoning.

Enric Trillas, Eloy Renedo, Claudi Alsina (2006)

Mathware and Soft Computing

Similarity:

This short note shows that the scheme of disjunctive reasoning, , not , does not hold neither in proper ortholattices nor in proper de Morgan algebras. In both cases the scheme, once translated into the inequality , forces the structure to be a boolean algebra.

On Marczewski-Burstin representable algebras

Marek Balcerzak, Artur Bartoszewicz, Piotr Koszmider (2004)

Colloquium Mathematicae

Similarity:

We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.

Flocks in universal and Boolean algebras

Gabriele Ricci (2010)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We propose the notion of flocks, which formerly were introduced only in based algebras, for any universal algebra. This generalization keeps the main properties we know from vector spaces, e.g. a closure system that extends the subalgebra one. It comes from the idempotent elementary functions, we call "interpolators", that in case of vector spaces merely are linear functions with normalized coefficients. The main example, we consider outside vector spaces, concerns...

Two constructions of De Morgan algebras and De Morgan quasirings

Ivan Chajda, Günther Eigenthaler (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).