Ascent, descent, quasi-nilpotent part and analytic core of operators.
Aiena, Pietro, Biondi, Maria Teresa (2002)
Matematichki Vesnik
Similarity:
Aiena, Pietro, Biondi, Maria Teresa (2002)
Matematichki Vesnik
Similarity:
Rajter-Ćirić, Danijela (2002)
Matematichki Vesnik
Similarity:
Omey, E.A.M. (2002)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Malgorzata Glogowska (2002)
Publications de l'Institut Mathématique
Similarity:
Ivo Klemes (1999)
Studia Mathematica
Similarity:
Stanković, Mića S., Minčić, Svetislav M., Velimirović, Ljubica S. (2002)
Matematichki Vesnik
Similarity:
Ryszard Deszcz, Malgorzata Glogowska (2002)
Publications de l'Institut Mathématique
Similarity:
Tao Qian (1997)
Studia Mathematica
Similarity:
The paper presents a theory of Fourier transforms of bounded holomorphic functions defined in sectors. The theory is then used to study singular integral operators on star-shaped Lipschitz curves, which extends the result of Coifman-McIntosh-Meyer on the -boundedness of the Cauchy integral operator on Lipschitz curves. The operator theory has a counterpart in Fourier multiplier theory, as well as a counterpart in functional calculus of the differential operator 1/i d/dz on the curves. ...
Piotr Mormul (1988)
Studia Mathematica
Similarity:
Đoković, Dragomir Ž. (2002)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Stanković, B. (2002)
Matematichki Vesnik
Similarity:
Orovchanec, Marija, Nachevska, Biljana (2002)
Matematichki Vesnik
Similarity:
Vladimír Kordula, Vladimír Müller, Vladimir Rakočević (1997)
Studia Mathematica
Similarity:
An operator in a Banach space is called upper (lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (descent). We extend this notion to n-tuples of commuting operators and show that this notion defines a joint spectrum. Further we study relations between semi-Browder and (essentially) semiregular operators.