Displaying similar documents to “Observer design for a class of nonlinear discrete-time systems with time-delay”

Distributed output regulation for linear multi-agent systems with unknown leaders

Xinghu Wang, Haibo Ji, Chuanrui Wang (2013)

Kybernetika

Similarity:

In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.

Efficient application of e-invariants in finite element method for an elastodynamic equation

Martin Balazovjech, Ladislav Halada (2013)

Kybernetika

Similarity:

We introduce a new efficient way of computation of partial differential equations using a hybrid method composed from FEM in space and FDM in time domain. The overall computational scheme is explicit in time. The key idea of the suggested way is based on a transformation of standard basis functions into new basis functions. The results of this matrix transformation are e-invariants (effective invariants) with such suitable properties which save the number of arithmetical operations needed...

Exponential H filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays

Li Ma, Meimei Xu, Ruting Jia, Hui Ye (2014)

Kybernetika

Similarity:

This paper is concerned with the exponential H filter design problem for stochastic Markovian jump systems with time-varying delays, where the time-varying delays include not only discrete delays but also distributed delays. First of all, by choosing a modified Lyapunov-Krasovskii functional and employing the property of conditional mathematical expectation, a novel delay-dependent approach is developed to deal with the mean-square exponential stability problem and H control problem....

Sliding subspace design based on linear matrix inequalities

Alán Tapia, Raymundo Márquez, Miguel Bernal, Joaquín Cortez (2014)

Kybernetika

Similarity:

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented...