The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Estimates for k -Hessian operator and some applications”

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Similarity:

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

Generalized characterization of the convex envelope of a function

Fethi Kadhi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We investigate the minima of functionals of the form [ a , b ] g ( u ˙ ( s ) ) d s where g is strictly convex. The admissible functions u : [ a , b ] are not necessarily convex and satisfy u f on [ a , b ] , u ( a ) = f ( a ) , u ( b ) = f ( b ) , f is a fixed function on [ a , b ] . We show that the minimum is attained by f ¯ , the convex envelope of f .

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

Similarity:

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

An optimal matching problem

Ivar Ekeland (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Given two measured spaces ( X , μ ) and ( Y , ν ) , and a third space Z , given two functions u ( x , z ) and v ( x , z ) , we study the problem of finding two maps s : X Z and t : Y Z such that the images s ( μ ) and t ( ν ) coincide, and the integral X u ( x , s ( x ) ) d μ - Y v ( y , t ( y ) ) d ν is maximal. We give condition on u and v for which there is a unique solution.

Poincaré Inequalities and Moment Maps

Bo’az Klartag (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in n . Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of p -spaces in n for 0 < p < 1 .

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

Similarity:

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...

Some characterization of locally nonconical convex sets

Witold Seredyński (2004)

Czechoslovak Mathematical Journal

Similarity:

A closed convex set Q in a local convex topological Hausdorff spaces X is called locally nonconical (LNC) if for every x , y Q there exists an open neighbourhood U of x such that ( U Q ) + 1 2 ( y - x ) Q . A set Q is local cylindric (LC) if for x , y Q , x y , z ( x , y ) there exists an open neighbourhood U of z such that U Q (equivalently: b d ( Q ) U ) is a union of open segments parallel to [ x , y ] . In this paper we prove that these two notions are equivalent. The properties LNC and LC were investigated in [3], where the implication L N C L C was proved in...

The Monge problem for strictly convex norms in d

Thierry Champion, Luigi De Pascale (2010)

Journal of the European Mathematical Society

Similarity:

We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.

Countably convex G δ sets

Vladimir Fonf, Menachem Kojman (2001)

Fundamenta Mathematicae

Similarity:

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets...