An optimal matching problem
ESAIM: Control, Optimisation and Calculus of Variations (2005)
- Volume: 11, Issue: 1, page 57-71
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Y. Brenier, Polar factorization and monotone rearrangements of vector-valued functions. Comm. Pure App. Math. 44 (1991) 375–417. Zbl0738.46011
- [2] G. Carlier, Duality and existence for a class of mass transportation problems and economic applications, Adv. Math. Economics 5 (2003) 1–21. Zbl1176.90409
- [3] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland Elsevier (1974) new edition, SIAM Classics in Appl. Math. (1999). Zbl0322.90046MR1727362
- [4] W. Gangbo and R. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. Zbl0887.49017
- [5] I. Ekeland, J. Heckman and L. Nesheim, Identification and estimation of hedonic models. J. Political Economy 112 (2004) 60–109.
- [6] L. Kantorovitch, On the transfer of masses, Dokl. Ak. Nauk USSR 37 (1942) 7–8. Zbl0061.09705
- [7] S. Rachev and A. Ruschendorf, Mass transportation problems. Springer-Verlag (1998). Zbl0990.60500
- [8] C. Villani, Topics in mass transportation. Grad. Stud. Math. 58 (2003) Zbl1106.90001MR1964483