Displaying similar documents to “A note on weakly ( μ , λ ) -closed functions”

On the class of b-L-weakly and order M-weakly compact operators

Driss Lhaimer, Mohammed Moussa, Khalid Bouras (2020)

Mathematica Bohemica

Similarity:

In this paper, we introduce and study new concepts of b-L-weakly and order M-weakly compact operators. As consequences, we obtain some characterizations of KB-spaces.

Weakly precompact subsets of L₁(μ,X)

Ioana Ghenciu (2012)

Colloquium Mathematicae

Similarity:

Let (Ω,Σ,μ) be a probability space, X a Banach space, and L₁(μ,X) the Banach space of Bochner integrable functions f:Ω → X. Let W = f ∈ L₁(μ,X): for a.e. ω ∈ Ω, ||f(ω)|| ≤ 1. In this paper we characterize the weakly precompact subsets of L₁(μ,X). We prove that a bounded subset A of L₁(μ,X) is weakly precompact if and only if A is uniformly integrable and for any sequence (fₙ) in A, there exists a sequence (gₙ) with g c o f i : i n for each n such that for a.e. ω ∈ Ω, the sequence (gₙ(ω)) is weakly...

An alternative Dunford-Pettis Property

Walden Freedman (1997)

Studia Mathematica

Similarity:

An alternative to the Dunford-Pettis Property, called the DP1-property, is introduced. Its relationship to the Dunford-Pettis Property and other related properties is examined. It is shown that p -direct sums of spaces with DP1 have DP1 if 1 ≤ p < ∞. It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than the Dunford-Pettis Property, while for von Neumann algebras, the two properties are equivalent.

M-weak and L-weak compactness of b-weakly compact operators

J. H&amp;amp;amp;#039;Michane, A. El Kaddouri, K. Bouras, M. Moussa (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact).

On the class of order almost L-weakly compact operators

Kamal El Fahri, Hassan Khabaoui, Jawad Hmichane (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.