Displaying similar documents to “Pseudouniform topologies on $C(X)$ given by ideals”

Metrization of function spaces with the Fell topology

Hanbiao Yang (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a Tychonoff space X , let C F ( X ) be the family of hypographs of all continuous maps from X to [ 0 , 1 ] endowed with the Fell topology. It is proved that X has a dense separable metrizable locally compact open subset if C F ( X ) is metrizable. Moreover, for a first-countable space X , C F ( X ) is metrizable if and only if X itself is a locally compact separable metrizable space. There exists a Tychonoff space X such that C F ( X ) is metrizable but X is not first-countable.

A nice class extracted from C p -theory

Vladimir Vladimirovich Tkachuk (2005)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study systematically a class of spaces introduced by Sokolov and call them Sokolov spaces. Their importance can be seen from the fact that every Corson compact space is a Sokolov space. We show that every Sokolov space is collectionwise normal, ω -stable and ω -monolithic. It is also established that any Sokolov compact space X is Fréchet-Urysohn and the space C p ( X ) is Lindelöf. We prove that any Sokolov space with a G δ -diagonal has a countable network and obtain some cardinality restrictions...

𝒫 -approximable compact spaces

Mihail G. Tkachenko (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every topological property 𝒫 , we define the class of 𝒫 -approximable spaces which consists of spaces X having a countable closed cover γ such that the “section” X ( x , γ ) = { F γ : x F } has the property 𝒫 for each x X . It is shown that every 𝒫 -approximable compact space has 𝒫 , if 𝒫 is one of the following properties: countable tightness, 0 -scatteredness with respect to character, C -closedness, sequentiality (the last holds under MA or 2 0 < 2 1 ). Metrizable-approximable spaces are studied: every compact space in...