Displaying similar documents to “On the spectral radius of -shape trees”

Turán's problem and Ramsey numbers for trees

Zhi-Hong Sun, Lin-Lin Wang, Yi-Li Wu (2015)

Colloquium Mathematicae

Similarity:

Let T¹ₙ = (V,E₁) and T²ₙ = (V,E₂) be the trees on n vertices with V = v , v , . . . , v n - 1 , E = v v , . . . , v v n - 3 , v n - 4 v n - 2 , v n - 3 v n - 1 and E = v v , . . . , v v n - 3 , v n - 3 v n - 2 , v n - 3 v n - 1 . For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T¹ₙ) and ex(p;T²ₙ), where ex(p;L) denotes the maximal number of edges in a graph of order p not containing L as a subgraph. Let r(G₁,G₂) be the Ramsey number of the two graphs G₁ and G₂. We also obtain some explicit formulas for r ( T , T i ) , where i ∈ 1,2 and Tₘ is a tree on m vertices with Δ(Tₘ) ≤ m - 3.

On locating and differentiating-total domination in trees

Mustapha Chellali (2008)

Discussiones Mathematicae Graph Theory

Similarity:

A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let γ L ( G ) and γ D ( G ) be the minimum cardinality of a locating-total dominating set and a differentiating-total...

On the order of certain close to regular graphs without a matching of given size

Sabine Klinkenberg, Lutz Volkmann (2007)

Czechoslovak Mathematical Journal

Similarity:

A graph G is a { d , d + k } -graph, if one vertex has degree d + k and the remaining vertices of G have degree d . In the special case of k = 0 , the graph G is d -regular. Let k , p 0 and d , n 1 be integers such that n and p are of the same parity. If G is a connected { d , d + k } -graph of order n without a matching M of size 2 | M | = n - p , then we show in this paper the following: If d = 2 , then k 2 ( p + 2 ) and (i) n k + p + 6 . If d 3 is odd and t an integer with 1 t p + 2 , then (ii) n d + k + 1 for k d ( p + 2 ) , (iii) n d ( p + 3 ) + 2 t + 1 for d ( p + 2 - t ) + t k d ( p + 3 - t ) + t - 3 , (iv) n d ( p + 3 ) + 2 p + 7 for k p . If d 4 is even, then (v) n d + k + 2 - η for k d ( p + 3 ) + p + 4 + η , (vi) n d + k + p + 2 - 2 t = d ( p + 4 ) + p + 6 for k = d ( p + 3 ) + 4 + 2 t and p 1 ,...

Domination and independence subdivision numbers of graphs

Teresa W. Haynes, Sandra M. Hedetniemi, Stephen T. Hedetniemi (2000)

Discussiones Mathematicae Graph Theory

Similarity:

The domination subdivision number s d γ ( G ) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of...

Unbalanced unicyclic and bicyclic graphs with extremal spectral radius

Francesco Belardo, Maurizio Brunetti, Adriana Ciampella (2021)

Czechoslovak Mathematical Journal

Similarity:

A signed graph Γ is a graph whose edges are labeled by signs. If Γ has n vertices, its spectral radius is the number ρ ( Γ ) : = max { | λ i ( Γ ) | : 1 i n } , where λ 1 ( Γ ) λ n ( Γ ) are the eigenvalues of the signed adjacency matrix A ( Γ ) . Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes 𝔘 n and 𝔅 n of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.

The Wiener number of powers of the Mycielskian

Rangaswami Balakrishnan, S. Francis Raj (2010)

Discussiones Mathematicae Graph Theory

Similarity:

The Wiener number of a graph G is defined as 1 / 2 u , v V ( G ) d ( u , v ) , d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W ( μ ( S k ) ) W ( μ ( T k ) ) W ( μ ( P k ) ) , where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ ( G k ) .

Sufficient conditions on the existence of factors in graphs involving minimum degree

Huicai Jia, Jing Lou (2024)

Czechoslovak Mathematical Journal

Similarity:

For a set { A , B , C , ... } of graphs, an { A , B , C , ... } -factor of a graph G is a spanning subgraph F of G , where each component of F is contained in { A , B , C , ... } . It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the Q -spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the Q -spectral radius...

Stronger bounds for generalized degrees and Menger path systems

R.J. Faudree, Zs. Tuza (1995)

Discussiones Mathematicae Graph Theory

Similarity:

For positive integers d and m, let P d , m ( G ) denote the property that between each pair of vertices of the graph G, there are m internally vertex disjoint paths of length at most d. For a positive integer t a graph G satisfies the minimum generalized degree condition δₜ(G) ≥ s if the cardinality of the union of the neighborhoods of each set of t vertices of G is at least s. Generalized degree conditions that ensure that P d , m ( G ) is satisfied have been investigated. In particular, it has been shown,...

The spectral determinations of the connected multicone graphs K w m P 17 and K w m S

Ali Zeydi Abdian, S. Morteza Mirafzal (2018)

Czechoslovak Mathematical Journal

Similarity:

Finding and discovering any class of graphs which are determined by their spectra is always an important and interesting problem in the spectral graph theory. The main aim of this study is to characterize two classes of multicone graphs which are determined by both their adjacency and Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let K w denote a complete graph on w vertices, and let m be a positive integer number. In A. Z. Abdian (2016)...

On the Spectral Characterizations of Graphs

Jing Huang, Shuchao Li (2017)

Discussiones Mathematicae Graph Theory

Similarity:

Several matrices can be associated to a graph, such as the adjacency matrix or the Laplacian matrix. The spectrum of these matrices gives some informations about the structure of the graph and the question “Which graphs are determined by their spectrum?” is still a difficult problem in spectral graph theory. Let [...] p2q 𝒰 p 2 q be the set of graphs obtained from Cp by attaching two pendant edges to each of q (q ⩽ p) vertices on Cp, whereas [...] p2q 𝒱 p 2 q the subset of [...] p2q 𝒰 p 2 q with odd p...

The extremal irregularity of connected graphs with given number of pendant vertices

Xiaoqian Liu, Xiaodan Chen, Junli Hu, Qiuyun Zhu (2022)

Czechoslovak Mathematical Journal

Similarity:

The irregularity of a graph G = ( V , E ) is defined as the sum of imbalances | d u - d v | over all edges u v E , where d u denotes the degree of the vertex u in G . This graph invariant, introduced by Albertson in 1997, is a measure of the defect of regularity of a graph. In this paper, we completely determine the extremal values of the irregularity of connected graphs with n vertices and p pendant vertices ( 1 p n - 1 ), and characterize the corresponding extremal graphs.

Weak roman domination in graphs

P. Roushini Leely Pushpam, T.N.M. Malini Mai (2011)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph and f be a function f:V → 0,1,2. A vertex u with f(u) = 0 is said to be undefended with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function f’: V → 0,1,2 defined by f’(u) = 1, f’(v) = f(v)-1 and f’(w) = f(w) if w ∈ V-u,v, has no undefended vertex. The weight of f is w ( f ) = v V f ( v ) . The weak Roman domination...