Displaying similar documents to “A note on signed cycle domination in graphs”

On Longest Cycles in Essentially 4-Connected Planar Graphs

Igor Fabrici, Jochen Harant, Stanislav Jendroľ (2016)

Discussiones Mathematicae Graph Theory

Similarity:

A planar 3-connected graph G is essentially 4-connected if, for any 3-separator S of G, one component of the graph obtained from G by removing S is a single vertex. Jackson and Wormald proved that an essentially 4-connected planar graph on n vertices contains a cycle C such that [...] . For a cubic essentially 4-connected planar graph G, Grünbaum with Malkevitch, and Zhang showed that G has a cycle on at least ¾ n vertices. In the present paper the result of Jackson and Wormald is improved....

On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant, Stanislav Jendrol', Hansjoachim Walther (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

Edge cycle extendable graphs

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

Similarity:

A graph is edge cycle extendable if every cycle C that is formed from edges and one chord of a larger cycle C⁺ is also formed from edges and one chord of a cycle C' of length one greater than C with V(C') ⊆ V(C⁺). Edge cycle extendable graphs are characterized by every block being either chordal (every nontriangular cycle has a chord) or chordless (no nontriangular cycle has a chord); equivalently, every chord of a cycle of length five or more has a noncrossing chord.

A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs

Wojciech Wide (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . . , n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs H we say that G is H-f1-heavy, if G is H-f1-heavy for...

Star-Cycle Factors of Graphs

Yoshimi Egawa, Mikio Kano, Zheng Yan (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S...

The cycle-complete graph Ramsey number r(C₅,K₇)

Ingo Schiermeyer (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.