Displaying similar documents to “Mirror-curve Codes for Knots and Links”

Lissajous knots and billiard knots

Vaughan Jones, Józef Przytycki (1998)

Banach Center Publications

Similarity:

We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.

Applications of topology to DNA

Isabel Darcy, De Sumners (1998)

Banach Center Publications

Similarity:

The following is an expository article meant to give a simplified introduction to applications of topology to DNA.

Positive knots, closed braids and the Jones polynomial

Alexander Stoimenow (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no...

Unknotting number and knot diagram.

Yasutaka Nakanishi (1996)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

This note is a continuation of a former paper, where we have discussed the unknotting number of knots with respect to knot diagrams. We will show that for every minimum-crossing knot-diagram among all unknotting-number-one two-bridge knot there exist crossings whose exchange yields the trivial knot, if the third Tait conjecture is true.

Edge number results for piecewise-Linear knots

Monica Meissen (1998)

Banach Center Publications

Similarity:

The minimal number of edges required to form a knot or link of type K is the edge number of K, and is denoted e(K). When knots are drawn with edges, they are appropriately called piecewise-linear or PL knots. This paper presents some edge number results for PL knots. Included are illustrations of and integer coordinates for the vertices of several prime PL knots.

Invariants of piecewise-linear knots

Richard Randell (1998)

Banach Center Publications

Similarity:

We study numerical and polynomial invariants of piecewise-linear knots, with the goal of better understanding the space of all knots and links. For knots with small numbers of edges we are able to find limits on polynomial or Vassiliev invariants sufficient to determine an exact list of realizable knots. We thus obtain the minimal edge number for all knots with six or fewer crossings. For example, the only knot requiring exactly seven edges is the figure-8 knot.