Compatible complex structures on twistor space

Guillaume Deschamps[1]

  • [1] Laboratoire de mathematiques de Brest UMR 6205 6 avenue de Gorgeu 29238 Brest cedex 3 France

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2219-2248
  • ISSN: 0373-0956

Abstract

top
Let M be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space Z admits a natural metric. The aim of this article is to study properties of complex structures on Z which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on M (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space Z .

How to cite

top

Deschamps, Guillaume. "Compatible complex structures on twistor space." Annales de l’institut Fourier 61.6 (2011): 2219-2248. <http://eudml.org/doc/219683>.

@article{Deschamps2011,
abstract = {Let $M$ be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space $Z$ admits a natural metric. The aim of this article is to study properties of complex structures on $ Z$ which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on $M$ (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space $Z$.},
affiliation = {Laboratoire de mathematiques de Brest UMR 6205 6 avenue de Gorgeu 29238 Brest cedex 3 France},
author = {Deschamps, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {twistor space; complex structure; scalar-flat; scalar-flat Kähler; locally conformally Kähler; quaternionic Kähler},
language = {eng},
number = {6},
pages = {2219-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Compatible complex structures on twistor space},
url = {http://eudml.org/doc/219683},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Deschamps, Guillaume
TI - Compatible complex structures on twistor space
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2219
EP - 2248
AB - Let $M$ be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space $Z$ admits a natural metric. The aim of this article is to study properties of complex structures on $ Z$ which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on $M$ (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space $Z$.
LA - eng
KW - twistor space; complex structure; scalar-flat; scalar-flat Kähler; locally conformally Kähler; quaternionic Kähler
UR - http://eudml.org/doc/219683
ER -

References

top
  1. D. V. Alekseevsky, S. Marchiafava, M. Pontecorvo, Compatible almost complex structures on quaternion Kähler manifolds, Ann. Global Anal. Geom. 16 (1998), 419-444 Zbl0912.53015MR1648844
  2. C. B. Allendoerfer, A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129 Zbl0060.38102MR7627
  3. V. Apostolov, P. Gauduchon, Self-dual Einstein hermitian four manifolds, arXiv:math/0003162, 1-39 Zbl1072.53006MR1994808
  4. V. Apostolov, P. Gauduchon, G. Grantcharov, Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3) 79 (1999), 414-428 Zbl1035.53061MR1702248
  5. V. Apostolov, O. Muškarov, Weakly-Einstein Hermitian surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1673-1692 Zbl0937.53035MR1723831
  6. M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
  7. W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, 4 (2004), Springer-Verlag, Berlin Zbl0718.14023MR2030225
  8. P. de Bartolomeis, A. Nannicini, Introduction to differential geometry of twistor spaces, Geometric theory of singular phenomena in partial differential equations (Cortona, 1995) (1998), 91-160, Cambridge Univ. Press, Cambridge Zbl0921.53035MR1702083
  9. F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40 Zbl0988.32017MR1760667
  10. M. Berger, Remarques sur les groupes d’holonomie des variétés riemanniennes, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1316-A1318 Zbl0151.28301MR200860
  11. A. L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl1147.53001MR867684
  12. R. Bott, L. W. Tu, Differential forms in algebraic topology, 82 (1982), Springer-Verlag, New York Zbl0496.55001MR658304
  13. C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526 Zbl0571.32017MR842629
  14. C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164 Zbl0642.53073MR915736
  15. D. Burns, P. De Bartolomeis, Applications harmoniques stables dans P n , Ann. Sci. École Norm. Sup. (4) 21 (1988), 159-177 Zbl0661.32035MR956764
  16. G. Deschamps, Espace twistoriel et structures complexes exotiques, Publicacions Matemàtiques 52 (2008), 435-457 Zbl1202.53050MR2436733
  17. J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640 (1986) Zbl0627.58019MR848842
  18. A. Fujiki, M. Pontecorvo, On Hermitian geometry of complex surfaces, Complex, contact and symmetric manifolds 234 (2005), 153-163, Birkhäuser Boston, Boston, MA Zbl1085.53065MR2105147
  19. P. Gauduchon, Surfaces kähleriennes dont la courbure vérifie certaines conditions de positivité, Riemannian geometry in dimension 4 (Paris, 1978/1979) 3 (1981), 220-263, CEDIC, Paris Zbl0513.53058MR769139
  20. F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
  21. N. Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1-55 Zbl0284.58016MR358873
  22. N. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), 133-150 Zbl0474.14024MR623721
  23. J. Kim, C. LeBrun, M. Pontecorvo, Scalar-flat Kähler surfaces of all genera, J. Reine Angew. Math. 486 (1997), 69-95 Zbl0876.53044MR1450751
  24. J. Lafontaine, Remarques sur les variétés conformément plates, Math. Ann. 259 (1982), 313-319 Zbl0469.53036MR661199
  25. A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble) 49 (1999), vii, x, 263-285 Zbl0926.32026MR1688140
  26. C. LeBrun, Curvature functionals, optimal metrics, and the differential topology of 4-manifolds, Different faces of geometry 3 (2004), 199-256, Kluwer/Plenum, New York Zbl1088.53024MR2102997
  27. Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. 50 (1974), 533-536 Zbl0354.32011MR460730
  28. A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404 Zbl0079.16102MR88770
  29. M. Pontecorvo, Algebraic dimension of twistor spaces and scalar curvature of anti-self-dual metrics, Math. Ann. 291 (1991), 113-122 Zbl0747.32021MR1125011
  30. M. Pontecorvo, On twistor spaces of anti-self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 331 (1992), 653-661 Zbl0754.53053MR1050087
  31. M. Pontecorvo, Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl. 2 (1992), 295-305 Zbl0766.53052MR1245329
  32. M. Pontecorvo, Complex structures on quaternionic manifolds, Differential Geom. Appl. 4 (1994), 163-177 Zbl0797.53037MR1279015
  33. M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), 159-177 Zbl0893.53026MR1467652
  34. Y. Rollin, M. Singer, Non-minimal scalar-flat Kähler surfaces and parabolic stability, Invent. Math. 162 (2005), 235-270 Zbl1083.32021MR2199006
  35. S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
  36. S. Salamon, Topics in four-dimensional Riemannian geometry, Geometry seminar “Luigi Bianchi” (Pisa, 1982) 1022 (1983), 33-124, Springer, Berlin Zbl0532.53035MR728393
  37. S. Salamon, Harmonic and holomorphic maps, Geometry seminar “Luigi Bianchi” II—1984 1164 (1985), 161-224, Springer, Berlin Zbl0591.53031MR829230
  38. S. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma (4) 17* (1991), 109-123 (1993) Zbl0796.53031MR1219803
  39. Y. T. Siu, Every K 3 surface is Kähler, Invent. Math. 73 (1983), 139-150 Zbl0557.32004MR707352
  40. F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politec. Torino 40 (1982), 81-92 Zbl0511.53068MR706055
  41. V. V. Tsanov, Moduli of twistor spaces, Proceedings of the XV International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal, 1986) (1987), 507-517 Zbl0713.32011MR1023218
  42. I. Vaisman, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc. 262 (1980), 533-542 Zbl0446.53048MR586733

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.