Compatible complex structures on twistor space
- [1] Laboratoire de mathematiques de Brest UMR 6205 6 avenue de Gorgeu 29238 Brest cedex 3 France
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2219-2248
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDeschamps, Guillaume. "Compatible complex structures on twistor space." Annales de l’institut Fourier 61.6 (2011): 2219-2248. <http://eudml.org/doc/219683>.
@article{Deschamps2011,
abstract = {Let $M$ be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space $Z$ admits a natural metric. The aim of this article is to study properties of complex structures on $ Z$ which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on $M$ (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space $Z$.},
affiliation = {Laboratoire de mathematiques de Brest UMR 6205 6 avenue de Gorgeu 29238 Brest cedex 3 France},
author = {Deschamps, Guillaume},
journal = {Annales de l’institut Fourier},
keywords = {twistor space; complex structure; scalar-flat; scalar-flat Kähler; locally conformally Kähler; quaternionic Kähler},
language = {eng},
number = {6},
pages = {2219-2248},
publisher = {Association des Annales de l’institut Fourier},
title = {Compatible complex structures on twistor space},
url = {http://eudml.org/doc/219683},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Deschamps, Guillaume
TI - Compatible complex structures on twistor space
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2219
EP - 2248
AB - Let $M$ be a Riemannian 4-manifold. The associated twistor space is a bundle whose total space $Z$ admits a natural metric. The aim of this article is to study properties of complex structures on $ Z$ which are compatible with the fibration and the metric. The results obtained enable us to translate some metric properties on $M$ (scalar flat, scalar-flat Kähler...) in terms of complex properties of its twistor space $Z$.
LA - eng
KW - twistor space; complex structure; scalar-flat; scalar-flat Kähler; locally conformally Kähler; quaternionic Kähler
UR - http://eudml.org/doc/219683
ER -
References
top- D. V. Alekseevsky, S. Marchiafava, M. Pontecorvo, Compatible almost complex structures on quaternion Kähler manifolds, Ann. Global Anal. Geom. 16 (1998), 419-444 Zbl0912.53015MR1648844
- C. B. Allendoerfer, A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101-129 Zbl0060.38102MR7627
- V. Apostolov, P. Gauduchon, Self-dual Einstein hermitian four manifolds, arXiv:math/0003162, 1-39 Zbl1072.53006MR1994808
- V. Apostolov, P. Gauduchon, G. Grantcharov, Bi-Hermitian structures on complex surfaces, Proc. London Math. Soc. (3) 79 (1999), 414-428 Zbl1035.53061MR1702248
- V. Apostolov, O. Muškarov, Weakly-Einstein Hermitian surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1673-1692 Zbl0937.53035MR1723831
- M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461 Zbl0389.53011MR506229
- W. P. Barth, K. Hulek, C. A. M. Peters, A. Van de Ven, Compact complex surfaces, 4 (2004), Springer-Verlag, Berlin Zbl0718.14023MR2030225
- P. de Bartolomeis, A. Nannicini, Introduction to differential geometry of twistor spaces, Geometric theory of singular phenomena in partial differential equations (Cortona, 1995) (1998), 91-160, Cambridge Univ. Press, Cambridge Zbl0921.53035MR1702083
- F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40 Zbl0988.32017MR1760667
- M. Berger, Remarques sur les groupes d’holonomie des variétés riemanniennes, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1316-A1318 Zbl0151.28301MR200860
- A. L. Besse, Einstein manifolds, 10 (1987), Springer-Verlag, Berlin Zbl1147.53001MR867684
- R. Bott, L. W. Tu, Differential forms in algebraic topology, 82 (1982), Springer-Verlag, New York Zbl0496.55001MR658304
- C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526 Zbl0571.32017MR842629
- C. P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988), 157-164 Zbl0642.53073MR915736
- D. Burns, P. De Bartolomeis, Applications harmoniques stables dans , Ann. Sci. École Norm. Sup. (4) 21 (1988), 159-177 Zbl0661.32035MR956764
- G. Deschamps, Espace twistoriel et structures complexes exotiques, Publicacions Matemàtiques 52 (2008), 435-457 Zbl1202.53050MR2436733
- J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 589-640 (1986) Zbl0627.58019MR848842
- A. Fujiki, M. Pontecorvo, On Hermitian geometry of complex surfaces, Complex, contact and symmetric manifolds 234 (2005), 153-163, Birkhäuser Boston, Boston, MA Zbl1085.53065MR2105147
- P. Gauduchon, Surfaces kähleriennes dont la courbure vérifie certaines conditions de positivité, Riemannian geometry in dimension 4 (Paris, 1978/1979) 3 (1981), 220-263, CEDIC, Paris Zbl0513.53058MR769139
- F. Hirzebruch, Topological methods in algebraic geometry, (1966), Springer-Verlag New York, Inc., New York Zbl0376.14001MR1335917
- N. Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1-55 Zbl0284.58016MR358873
- N. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), 133-150 Zbl0474.14024MR623721
- J. Kim, C. LeBrun, M. Pontecorvo, Scalar-flat Kähler surfaces of all genera, J. Reine Angew. Math. 486 (1997), 69-95 Zbl0876.53044MR1450751
- J. Lafontaine, Remarques sur les variétés conformément plates, Math. Ann. 259 (1982), 313-319 Zbl0469.53036MR661199
- A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble) 49 (1999), vii, x, 263-285 Zbl0926.32026MR1688140
- C. LeBrun, Curvature functionals, optimal metrics, and the differential topology of 4-manifolds, Different faces of geometry 3 (2004), 199-256, Kluwer/Plenum, New York Zbl1088.53024MR2102997
- Y. Miyaoka, Kähler metrics on elliptic surfaces, Proc. Japan Acad. 50 (1974), 533-536 Zbl0354.32011MR460730
- A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391-404 Zbl0079.16102MR88770
- M. Pontecorvo, Algebraic dimension of twistor spaces and scalar curvature of anti-self-dual metrics, Math. Ann. 291 (1991), 113-122 Zbl0747.32021MR1125011
- M. Pontecorvo, On twistor spaces of anti-self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 331 (1992), 653-661 Zbl0754.53053MR1050087
- M. Pontecorvo, Uniformization of conformally flat Hermitian surfaces, Differential Geom. Appl. 2 (1992), 295-305 Zbl0766.53052MR1245329
- M. Pontecorvo, Complex structures on quaternionic manifolds, Differential Geom. Appl. 4 (1994), 163-177 Zbl0797.53037MR1279015
- M. Pontecorvo, Complex structures on Riemannian four-manifolds, Math. Ann. 309 (1997), 159-177 Zbl0893.53026MR1467652
- Y. Rollin, M. Singer, Non-minimal scalar-flat Kähler surfaces and parabolic stability, Invent. Math. 162 (2005), 235-270 Zbl1083.32021MR2199006
- S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171 Zbl0486.53048MR664330
- S. Salamon, Topics in four-dimensional Riemannian geometry, Geometry seminar “Luigi Bianchi” (Pisa, 1982) 1022 (1983), 33-124, Springer, Berlin Zbl0532.53035MR728393
- S. Salamon, Harmonic and holomorphic maps, Geometry seminar “Luigi Bianchi” II—1984 1164 (1985), 161-224, Springer, Berlin Zbl0591.53031MR829230
- S. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma (4) 17* (1991), 109-123 (1993) Zbl0796.53031MR1219803
- Y. T. Siu, Every surface is Kähler, Invent. Math. 73 (1983), 139-150 Zbl0557.32004MR707352
- F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politec. Torino 40 (1982), 81-92 Zbl0511.53068MR706055
- V. V. Tsanov, Moduli of twistor spaces, Proceedings of the XV International Conference on Differential Geometric Methods in Theoretical Physics (Clausthal, 1986) (1987), 507-517 Zbl0713.32011MR1023218
- I. Vaisman, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc. 262 (1980), 533-542 Zbl0446.53048MR586733
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.