Displaying similar documents to “Effective semi-analytic integration for hypersingular Galerkin boundary integral equations for the Helmholtz equation in 3D”

Diffusion and propagation problems in some ramified domains with a fractal boundary

Yves Achdou, Christophe Sabot, Nicoletta Tchou (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This paper is devoted to some elliptic boundary value problems in a self-similar ramified domain of 2 with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A generalized Neumann boundary condition is imposed on the fractal boundary. Sobolev spaces on this domain are studied. In particular, extension and trace results are obtained. These results enable the investigation of the variational formulation of the above mentioned boundary value problems. Next, for...

Some variants of the method of fundamental solutions: regularization using radial and nearly radial basis functions

Csaba Gáspár (2013)

Open Mathematics

Similarity:

The method of fundamental solutions and some versions applied to mixed boundary value problems are considered. Several strategies are outlined to avoid the problems due to the singularity of the fundamental solutions: the use of higher order fundamental solutions, and the use of nearly fundamental solutions and special fundamental solutions concentrated on lines instead of points. The errors of the approximations as well as the problem of ill-conditioned matrices are illustrated via...

Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering

Xavier Antoine, Hélène Barucq (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the...