### On a theorem of Fermi

Viktor V. Slavskii (1996)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Conformally flat metric $\overline{g}$ is said to be Ricci superosculating with $g$ at the point ${x}_{0}$ if ${g}_{ij}\left({x}_{0}\right)={\overline{g}}_{ij}\left({x}_{0}\right)$, ${\Gamma}_{ij}^{k}\left({x}_{0}\right)={\overline{\Gamma}}_{ij}^{k}\left({x}_{0}\right)$, ${R}_{ij}^{k}\left({x}_{0}\right)={\overline{R}}_{ij}^{k}\left({x}_{0}\right)$, where ${R}_{ij}$ is the Ricci tensor. In this paper the following theorem is proved: ((