Displaying similar documents to “Some division theorems for vector fields”

A remark on arithmetic equivalence and the normset

Jim Coykendall (2000)

Acta Arithmetica

Similarity:

1. Introduction. Number fields with the same zeta function are said to be arithmetically equivalent. Arithmetically equivalent fields share much of the same properties; for example, they have the same degrees, discriminants, number of both real and complex valuations, and prime decomposition laws (over ℚ). They also have isomorphic unit groups and determine the same normal closure over ℚ [6]. Strangely enough, it has been shown (for example [4], or more recently [6] and [7]) that...

The unit group of F S 3 .

Sharma, R.K., Srivastava, J.B., Khan, Manju (2007)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

On the global existence for the axisymmetric Euler equations

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani (2008)

Journées Équations aux dérivées partielles

Similarity:

This paper deals with the global well-posedness of the 3 D axisymmetric Euler equations for initial data lying in critical Besov spaces B p , 1 1 + 3 p . In this case the BKM criterion is not known to be valid and to circumvent this difficulty we use a new decomposition of the vorticity .

The proof of the Nirenberg-Treves conjecture

Nils Dencker (2003)

Journées équations aux dérivées partielles

Similarity:

We prove the Nirenberg-Treves conjecture : that for principal type pseudo-differential operators local solvability is equivalent to condition ( Ψ ). This condition rules out certain sign changes of the imaginary part of the principal symbol along the bicharacteristics of the real part. We obtain local solvability by proving a localizable estimate for the adjoint operator with a loss of two derivatives (compared with the elliptic case). The proof involves a new metric in the Weyl (or Beals-Fefferman)...