The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Convex-like inequality, homogeneity, subadditivity, and a characterization of L p -norm”

Subadditive functions and partial converses of Minkowski's and Mulholland's inequalities

J. Matkowski, T. Świątkowski (1993)

Fundamenta Mathematicae

Similarity:

Let ϕ be an arbitrary bijection of + . We prove that if the two-place function ϕ - 1 [ ϕ ( s ) + ϕ ( t ) ] is subadditive in + 2 then ϕ must be a convex homeomorphism of + . This is a partial converse of Mulholland’s inequality. Some new properties of subadditive bijections of + are also given. We apply the above results to obtain several converses of Minkowski’s inequality.

Plurisubharmonic saddles

Siegfried Momm (1996)

Annales Polonici Mathematici

Similarity:

A certain linear growth of the pluricomplex Green function of a bounded convex domain of N at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.

On a Theorem of Mierczyński

Gerd Herzog (1998)

Colloquium Mathematicae

Similarity:

We prove that the initial value problem x’(t) = f(t,x(t)), x ( 0 ) = x 1 is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.

Growth of the product j = 1 n ( 1 - x a j )

J. P. Bell, P. B. Borwein, L. B. Richmond (1998)

Acta Arithmetica

Similarity:

We estimate the maximum of j = 1 n | 1 - x a j | on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when a j is j k or when a j is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when a j is j.    In contrast we show, under fairly general conditions, that the maximum is less than 2 n / n r , where r is an arbitrary positive number. One consequence...

On ergodicity of some cylinder flows

Krzysztof Frączek (2000)

Fundamenta Mathematicae

Similarity:

We study ergodicity of cylinder flows of the form    T f : T × T × , T f ( x , y ) = ( x + α , y + f ( x ) ) , where f : T is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that D k f is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of D k f have some good properties, then T f is ergodic. Moreover, there exists ε f > 0 such that if v : T is a function with zero integral such that D k v is of bounded...