Displaying similar documents to “Dynamical systems with multiplicative perturbations”

Random Dynamical Systems with Jumps and with a Function Type Intensity

Joanna Kubieniec (2016)

Annales Mathematicae Silesianae

Similarity:

In paper [4] there are considered random dynamical systems with randomly chosen jumps acting on Polish spaces. The intensity of this process is a constant λ. In this paper we formulate criteria for the existence of an invariant measure and asymptotic stability for these systems in the case when λ is not constant but a Lipschitz function.

Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces

Paweł Płonka (2016)

Annales Mathematicae Silesianae

Similarity:

In this paper we want to show the existence of a form of asymptotic stability of random dynamical systems in the sense of L. Arnold using arguments analogous to those presented by T. Szarek in [6], that is showing it using conditions generalizing the notion of tightness of measures. In order to do that we use tightness theory for random measures as developed by H. Crauel in [2].

Asymptotic Stability of Zakharov-Kuznetsov solitons

Didier Pilod (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In this report, we review the proof of the asymptotic stability of the Zakharov-Kuznetsov solitons in dimension two. Those results were recently obtained in a joint work with Raphaël Côte, Claudio Muñoz and Gideon Simpson.

Pullback incremental attraction

Peter E. Kloeden, Thomas Lorenz (2014)

Nonautonomous Dynamical Systems

Similarity:

A pullback incremental attraction, a nonautonomous version of incremental stability, is introduced for nonautonomous systems that may have unbounded limiting solutions. Its characterisation by a Lyapunov function is indicated.