Subset sums modulo a prime
Hoi H. Nguyen, Endre Szemerédi, Van H. Vu (2008)
Acta Arithmetica
Similarity:
Hoi H. Nguyen, Endre Szemerédi, Van H. Vu (2008)
Acta Arithmetica
Similarity:
Michael Daub, Jaclyn Lang, Mona Merling, Allison M. Pacelli, Natee Pitiwan, Michael Rosen (2011)
Acta Arithmetica
Similarity:
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
Abdelmejid Bayad, Yoshinori Hamahata (2012)
Acta Arithmetica
Similarity:
Joung Min Song (2002)
Acta Arithmetica
Similarity:
Gopalakrishna Hejmadi Gadiyar, Ramanathan Padma (2018)
Czechoslovak Mathematical Journal
Similarity:
We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.
Joung Min Song (2001)
Acta Arithmetica
Similarity:
Huixue Lao (2008)
Acta Arithmetica
Similarity:
P. Gallagher (1974)
Acta Arithmetica
Similarity:
J. M. De Koninck, A. Ivić (1990)
Publications de l'Institut Mathématique
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
K. Szymiczek (1969)
Colloquium Mathematicae
Similarity:
Shen, Chun-Yen (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Mollin, Richard A. (1990)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
Faruk Göloğlu, Gary McGuire, Richard Moloney (2011)
Acta Arithmetica
Similarity:
Eleni Agathocleous (2014)
Acta Arithmetica
Similarity:
The class numbers h⁺ of the real cyclotomic fields are very hard to compute. Methods based on discriminant bounds become useless as the conductor of the field grows, and methods employing Leopoldt's decomposition of the class number become hard to use when the field extension is not cyclic of prime power. This is why other methods have been developed, which approach the problem from different angles. In this paper we extend one of these methods that was designed for real cyclotomic fields...