Two remarks on the maximal-ideal space of H
Stephen Scheinberg (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The topology of the maximal-ideal space of is discussed.
Stephen Scheinberg (2021)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
The topology of the maximal-ideal space of is discussed.
W. Żelazko (1969)
Colloquium Mathematicae
Similarity:
Pierre Matet (2013)
Fundamenta Mathematicae
Similarity:
We discuss the problem of whether there exists a restriction of the noncofinal ideal on that is normal.
Marta Frankowska, Andrzej Nowik (2011)
Colloquium Mathematicae
Similarity:
We prove that the ideal (a) defined by the density topology is not generated. This answers a question of Z. Grande and E. Strońska.
Mohammed Hemdaoui (2019)
Mathematica Bohemica
Similarity:
We show that some unital complex commutative LF-algebra of -tempered functions on (M. Hemdaoui, 2017) equipped with its natural convex vector bornology is useful for functional calculus.
Vladimir Fonf, Menachem Kojman (2001)
Fundamenta Mathematicae
Similarity:
We investigate countably convex subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets...
Masato Kurihara (1999)
Journal of the European Mathematical Society
Similarity:
In this paper, for a totally real number field we show the ideal class group of is trivial. We also study the -component of the ideal class group of the cyclotomic -extension.
F. Azarpanah, O. A. S. Karamzadeh, S. Rahmati (2008)
Colloquium Mathematicae
Similarity:
Let be the socle of C(X). It is shown that each prime ideal in is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated points (resp. int Z(h) = ∅). It is proved that , where dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We also give an algebraic characterization of compact spaces with at most a countable number of nonisolated points....
Pamela Gorkin, Raymond Mortini, Daniel Suárez (2001)
Studia Mathematica
Similarity:
Let f be a function in the Douglas algebra A and let I be a finitely generated ideal in A. We give an estimate for the distance from f to I that allows us to generalize a result obtained by Bourgain for to arbitrary Douglas algebras.
M. Obradović, S. Owa (1986)
Matematički Vesnik
Similarity:
James C. Lillo (1967)
Annales Polonici Mathematici
Similarity:
Piotr Zakrzewski (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We give a classical proof of the theorem stating that the -ideal of meager sets is the unique -ideal on a Polish group, generated by closed sets which is invariant under translations and ergodic.
Anna Stasica (2003)
Annales Polonici Mathematici
Similarity:
We obtain, in a simple way, an estimate for the Noether exponent of an ideal I without embedded components (i.e. we estimate the smallest number μ such that ).
Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)
Czechoslovak Mathematical Journal
Similarity:
We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let be a commutative ring with a nonzero identity and a proper ideal of . The proper ideal is said to be a weakly strongly quasi-primary ideal if whenever for some , then or Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero...
Dongyang Chen, William B. Johnson, Bentuo Zheng (2014)
Studia Mathematica
Similarity:
We give a corrected proof of Theorem 2.10 in our paper “Commutators on ” [Studia Math. 206 (2011), 175-190] for the case 1 < q < p < ∞. The case when 1 = q < p < ∞ remains open. As a consequence, the Main Theorem and Corollary 2.17 in that paper are only valid for 1 < p,q < ∞.
Brahim Boudine (2023)
Mathematica Bohemica
Similarity:
A commutative ring with unity is called a special principal ideal ring (SPIR) if it is a non integral principal ideal ring containing only one nonzero prime ideal, its length is the index of nilpotency of its maximal ideal. In this paper, we show a characterization of irreducible polynomials over a SPIR of length . Then, we give a sufficient condition for a polynomial to be irreducible over a SPIR of any length .
Tomáš G. Roskovec, Filip Soudský (2023)
Kybernetika
Similarity:
The weak lower semicontinuity of the functional is a classical topic that was studied thoroughly. It was shown that if the function is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on . However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory.
Z. Krzeszowiak (1969)
Annales Polonici Mathematici
Similarity:
H. Fejzić, R. E. Svetic, C. E. Weil (2010)
Fundamenta Mathematicae
Similarity:
The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and except on a countable set. Moreover is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.
Stefan Müller, Vladimír Šverák (1999)
Journal of the European Mathematical Society
Similarity:
We study solutions of first order partial differential relations , where is a Lipschitz map and is a bounded set in matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of and second we replace Gromov’s −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...
Gülşen Ulucak, Ece Yetkin Çelikel (2020)
Czechoslovak Mathematical Journal
Similarity: