Displaying similar documents to “Martingales in Banach spaces for which the convergence with probability one, in probability and in law coincide”

Approximations of the ultimate ruin probability in the classical risk model using the Banach's fixed-point theorem and the continuity of the ruin probability

Jaime Martínez Sánchez, Fernando Baltazar-Larios (2022)

Kybernetika

Similarity:

In this paper, we show two applications of the Banach's Fixed-Point Theorem: first, to approximate the ultimate ruin probability in the classical risk model or Cramér-Lundberg model when claim sizes have some arbitrary continuous distribution and second, we propose an algorithm based in this theorem and some conditions to guarantee the continuity of the ruin probability with respect to the weak metric (Kantorovich). In risk theory literature, there is no methodology based in the Banach's...

An extended problem to Bertrand's paradox

Mostafa K. Ardakani, Shaun S. Wulff (2014)

Discussiones Mathematicae Probability and Statistics

Similarity:

Bertrand's paradox is a longstanding problem within the classical interpretation of probability theory. The solutions 1/2, 1/3, and 1/4 were proposed using three different approaches to model the problem. In this article, an extended problem, of which Bertrand's paradox is a special case, is proposed and solved. For the special case, it is shown that the corresponding solution is 1/3. Moreover, the reasons of inconsistency are discussed and a proper modeling approach is determined by...

Equivalent or absolutely continuous probability measures with given marginals

Patrizia Berti, Luca Pratelli, Pietro Rigo, Fabio Spizzichino (2015)

Dependence Modeling

Similarity:

Let (X,A) and (Y,B) be measurable spaces. Supposewe are given a probability α on A, a probability β on B and a probability μ on the product σ-field A ⊗ B. Is there a probability ν on A⊗B, with marginals α and β, such that ν ≪ μ or ν ~ μ ? Such a ν, provided it exists, may be useful with regard to equivalent martingale measures and mass transportation. Various conditions for the existence of ν are provided, distinguishing ν ≪ μ from ν ~ μ.

Large losses-probability minimizing approach

Michał Baran (2004)

Applicationes Mathematicae

Similarity:

The probability minimizing problem for large losses of portfolio in discrete and continuous time models is studied. This gives a generalization of quantile hedging presented in [3].