Contributions to foundations of probability calculus on the basis of the modal logical calculus M C ν or M C * ν

A. Montanaro; A. Bressan

Rendiconti del Seminario Matematico della Università di Padova (1983)

  • Volume: 70, page 1-11
  • ISSN: 0041-8994

How to cite

top

Montanaro, A., and Bressan, A.. "Contributions to foundations of probability calculus on the basis of the modal logical calculus $MC^\nu $ or $MC^\nu _\ast $." Rendiconti del Seminario Matematico della Università di Padova 70 (1983): 1-11. <http://eudml.org/doc/107918>.

@article{Montanaro1983,
author = {Montanaro, A., Bressan, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {modal logic; random variable; probability spaces},
language = {eng},
pages = {1-11},
publisher = {Seminario Matematico of the University of Padua},
title = {Contributions to foundations of probability calculus on the basis of the modal logical calculus $MC^\nu $ or $MC^\nu _\ast $},
url = {http://eudml.org/doc/107918},
volume = {70},
year = {1983},
}

TY - JOUR
AU - Montanaro, A.
AU - Bressan, A.
TI - Contributions to foundations of probability calculus on the basis of the modal logical calculus $MC^\nu $ or $MC^\nu _\ast $
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1983
PB - Seminario Matematico of the University of Padua
VL - 70
SP - 1
EP - 11
LA - eng
KW - modal logic; random variable; probability spaces
UR - http://eudml.org/doc/107918
ER -

References

top
  1. [1] A. Bressan - A. Montanaro, Contributions to foundations of probability calculus on the basis of the modal logical calculus MCv or MCv*, Part. 1: Basic theorems of a recent modal version of the probability calculus, based on MCv or MCv*, Rend. Sem. Mat. Univ. di Padova, 64 (1980), p. 11. Zbl0533.03006MR636630
  2. [2] A. Bressan - A. Montanaro, Contributions to foundations of probability calculus on the basis of the modal logical calculus MCv or MCv*. Part. 2: On a known existence rule for the probability calculus, Rend. Sem. Mat. Univ. di Padova, 65 (1980), pp. 263-270. Zbl0501.03010MR653299
  3. [3] A. Bressan, A general interpreted modal calculus, New Haven and London, Yale University Press, 1972. Zbl0255.02015MR401432
  4. [4] A. Bressan, Generalizations of the modal calculi MCv and MC∞. Their comparison with similar calculi endowed with different semantics. Application to probability theory, being printed in the procedings of the workshop on modal logic held in Tubingen in Dec. 1977, Synthese Library Series, Dr. Reidel Pubblishing Co., Dordrecht, Holland and Boston. 
  5. [5] A. Bressan, Comments on Suppes' Paper: the essential but implicit rule of modal concept in Science, PSA 1972, pp. 315-321; edited by K. F. Schaffner and R. S. Cohen. Zbl0317.02005
  6. [6] G. Castelnuovo, Calcolo delle probabilità, Milano-Roma-Napoli, Soc. Ed. Dante Alighieri, 1919. Zbl47.0481.01JFM47.0480.04
  7. [7] L. Daboni, Calcolo delle probabilità ed elementi di statistica, Unione tipografico-editrice Torinese, 1974. Zbl0206.48201MR324795
  8. [8] B. De Finetti, Il buon senso e le foglie di fico, Bell. U.M.I., (4), 12 (1975 p. 1. Zbl0331.60001
  9. [9] P. Dore, Introduziane al calcolo delle probabilità, Casa Editrice Prof. Riccardo Pàtron, Bologna, 1962. 
  10. [10] H. Freudenthal, The crux of course design in probability, In Educational Studies in Probability, Rhidel, Dordrecht, Holland (1974), p. 261. Zbl0275.60002
  11. [11] E. Mendelson, Introduction to mathematical logic, Von Nostrand, Rein-hold, 1964. Zbl0192.01901MR164867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.