The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A T(b) theorem with remarks on analytic capacity and the Cauchy integral”

Analytic capacity, Calderón-Zygmund operators, and rectifiability

Guy David (1999)

Publicacions Matemàtiques

Similarity:

For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on CK are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H(K) is finite was recently settled....

An analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function

Mitja Nedic (2023)

Czechoslovak Mathematical Journal

Similarity:

We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.