The Cauchy problem and Hadamard's example
Jan Persson (1976)
Journées équations aux dérivées partielles
Similarity:
Jan Persson (1976)
Journées équations aux dérivées partielles
Similarity:
H. Marcinkowska (1971)
Annales Polonici Mathematici
Similarity:
G. Métivier (1993)
Inventiones mathematicae
Similarity:
Mattila, Pertti (1998)
Documenta Mathematica
Similarity:
Józef Siciak (1990)
Colloquium Mathematicae
Similarity:
Angus E. Taylor (1937)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Antoni Augustynowicz (1999)
Annales Polonici Mathematici
Similarity:
We prove an existence theorem of Cauchy-Kovalevskaya type for the equation where f is a polynomial with respect to the last k variables.
Koh, E.K., Li, C.K. (1993)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Meryem Chetti, Karima Hamani (2024)
Mathematica Bohemica
Similarity:
We study the hyper-order of analytic solutions of linear differential equations with analytic coefficients having the same order near a finite singular point. We improve previous results given by S. Cherief and S. Hamouda (2021). We also consider the nonhomogeneous linear differential equations.
Luigi Rodino (1985)
Publications mathématiques et informatique de Rennes
Similarity:
Guy David (1999)
Publicacions Matemàtiques
Similarity:
For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on CK are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H(K) is finite was recently settled....
Mitja Nedic (2023)
Czechoslovak Mathematical Journal
Similarity:
We derive an analytic characterization of the symmetric extension of a Herglotz-Nevanlinna function. Here, the main tools used are the so-called variable non-dependence property and the symmetry formula satisfied by Herglotz-Nevanlinna and Cauchy-type functions. We also provide an extension of the Stieltjes inversion formula for Cauchy-type and quasi-Cauchy-type functions.
Dubinin, V.N., Èĭrikh, N.V. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity: