The Bergman Kernel on Uniformly Extendable Pseudoconvex Domains.
Takeo Ohsawa, Klaus Diederich, Gregor Herbort (1985/86)
Mathematische Annalen
Similarity:
Takeo Ohsawa, Klaus Diederich, Gregor Herbort (1985/86)
Mathematische Annalen
Similarity:
Sanghyun Cho (1996)
Mathematische Zeitschrift
Similarity:
Włodzimierz Zwonek
Similarity:
Our work is divided into five chapters. In Chapter I we introduce necessary notions and we present the most important facts that we shall use. We also present our main results. Chapter I covers the following topics: • holomorphically contractible families of functions and pseudometrics, their basic properties, product property, Lempert Theorem, notion of geodesic, problem of finding effective formulas for invariant functions and pseudometrics and geodesics, completeness...
Włodzimierz Zwonek (1999)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Steven R. Bell, Harold P. Boas (1981)
Mathematische Annalen
Similarity:
Gregor Herbort (1983)
Manuscripta mathematica
Similarity:
R. Michael Range (1990)
Mathematische Annalen
Similarity:
N. Watts Gebelt (1995)
Mathematische Zeitschrift
Similarity:
Gregor Herbort (2013)
Annales Polonici Mathematici
Similarity:
We study the class of smooth bounded weakly pseudoconvex domains D ⊂ ℂⁿ whose boundary points are of finite type (in the sense of J. Kohn) and whose Levi form has at most one degenerate eigenvalue at each boundary point, and prove effective estimates on the invariant distance of Carathéodory. This completes the author's investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi in the corank one situation and on invariant distances on pseudoconvex finite...
Ewa Ligocka (1984)
Studia Mathematica
Similarity:
David W. Catlin (1988/89)
Mathematische Zeitschrift
Similarity:
Andrei Iordan (1984/85)
Mathematische Zeitschrift
Similarity:
John Erik Fornaess, Eric Bedford (1978)
Inventiones mathematicae
Similarity:
Friedrich Haslinger (1998)
Annales Polonici Mathematici
Similarity:
We compute the Bergman kernel functions of the unbounded domains , where . It is also shown that these kernel functions have no zeros in . We use a method from harmonic analysis to reduce the computation of the 2-dimensional case to the problem of finding the kernel function of a weighted space of entire functions in one complex variable.