Stable probability measures on Banach spaces
A. Kumar, V. Mandrekar (1972)
Studia Mathematica
Similarity:
A. Kumar, V. Mandrekar (1972)
Studia Mathematica
Similarity:
K. P. S. Bhaskara Rao, B. V. Rao (1979)
Colloquium Mathematicae
Similarity:
Markus Riedle (2011)
Studia Mathematica
Similarity:
In this work infinitely divisible cylindrical probability measures on arbitrary Banach spaces are introduced. The class of infinitely divisible cylindrical probability measures is described in terms of their characteristics, a characterisation which is not known in general for infinitely divisible Radon measures on Banach spaces. Further properties of infinitely divisible cylindrical measures such as continuity are derived. Moreover, the classification result enables us to deduce new...
Zbigniew Jurek, Kazimierz Urbanik (1978)
Colloquium Mathematicum
Similarity:
Krakowiak Wiesław
Similarity:
Introduction.............................................................5I. Preliminaries.........................................................6 1.1. Semigroups........................................7 1.2. Algebraic groups..................................7 1.3. Additive operators in Abelian groups and linear operators in linear spaces................................8 1.4. Abelian metrizable groups........................10 1.5. Locally compact Abelian groups...................13 1.6....
Flemming Topsøe (1979)
Colloquium Mathematicae
Similarity:
W. Krakowiak (1979)
Colloquium Mathematicae
Similarity:
R. Jajte (1979)
Banach Center Publications
Similarity:
A. Kumar, B. Schreiber (1975)
Studia Mathematica
Similarity:
J. Kucharczak (1975)
Colloquium Mathematicae
Similarity:
Emile M.J. Bertin, Radu Theodorescu (1984)
Mathematische Annalen
Similarity:
W. Słowikowski
Similarity:
CONTENTS1. Introduction, review of the results, examples...................................................................................52. Linear probability measures and their representations................................................................103. Linear Lusin measurable functionals...............................................................................................164. Pre-supports and a modification of the definition of the linear probability measure................235....
Luigi Ambrosio (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
A survey on the main results of the theory of gradient flows in metric spaces and in the Wasserstein space of probability measures obtained in [3] and [4], is presented.