On the structure of Jordan *-derivations
Matej Brešar, Borut Zalar (1992)
Colloquium Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Matej Brešar, Borut Zalar (1992)
Colloquium Mathematicae
Similarity:
Abbas Najati (2010)
Czechoslovak Mathematical Journal
Similarity:
Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple -derivation on a Lie triple system is a -derivation.
Sara Shafiq, Muhammad Aslam (2017)
Open Mathematics
Similarity:
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
Dilian Yang (2005)
Colloquium Mathematicae
Similarity:
Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided. ...
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
Fangyan Lu (2009)
Studia Mathematica
Similarity:
We show that every Jordan isomorphism between CSL algebras is the sum of an isomorphism and an anti-isomorphism. Also we show that each Jordan derivation of a CSL algebra is a derivation.
A. Moreno Galindo (1997)
Studia Mathematica
Similarity:
For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on . This analytic determination of Jordan polynomials improves the one recently obtained in [5].
J. Harkness (1893/94)
Bulletin of the New York Mathematical Society
Similarity:
Driss, Aiat Hadj Ahmed, Ben Yakoub, L'Moufadal (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Fošner, Maja (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Brešar, A. R. Villena (2001)
Studia Mathematica
Similarity:
The questions when a derivation on a Jordan-Banach algebra has quasi-nilpotent values, and when it has the range in the radical, are discussed.
A. Villena (1996)
Studia Mathematica
Similarity:
We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.
Eberhard Neher (1979)
Mathematische Zeitschrift
Similarity:
A. Moreno Galindo, A. Rodríguez Palacios (1997)
Extracta Mathematicae
Similarity:
Lotfi Riahi (2004)
Colloquium Mathematicae
Similarity:
We prove a new 3G-Theorem for the Laplace Green function G on an arbitrary Jordan domain D in ℝ². This theorem extends the recent one proved on a Dini-smooth Jordan domain.