Displaying similar documents to “The numerical treatment of stiff initial value problems”

A ( α )-Stable Linear Multistep Methods for Stiff IVPs in ODEs

R. I. Okuonghae, M. N. O. Ikhile (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, a class of A( α )-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number k 3 and stiffly stable for k = 4 , 5 and 6 . Some numerical results are reported to illustrate the method.

The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF

R. I. Okuonghae, M. N. O. Ikhile (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A ( α ) -stable for step length k 7 .

A -stable methods of high order for Volterra integral equations

Ľubor Malina (1975)

Aplikace matematiky

Similarity:

Method for numerical solution of Volterra integral equations, based on the O.I.M. methods, is suggested. It is known that the class of O.I.M. methods includes A -stable methods of arbitrary high order of asymptotic accuracy. In part 5, it is proved that these methods generate methods for numerical solution of Volterra equations which are also A -stable and of an arbitrarily high order. There is one advantage of the methods. Namely, they need no matrix inversion in the course of their numerical...