Displaying similar documents to “Thermodynamics of simple mixtures of fluids with application to second sound and liquid helium”

The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section

Dietmar Kröner, Philippe G. LeFloch, Mai-Duc Thanh (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [ (1995) 483–548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a...

The entropy principle: from continuum mechanics to hyperbolic systems of balance laws

Tommaso Ruggeri (2005)

Bollettino dell'Unione Matematica Italiana

Similarity:

We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for...

Exponential convergence to equilibrium Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics

Marzia Bisi, Laurent Desvillettes, Giampiero Spiga (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:


We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.