Displaying similar documents to “Asymptotic methods applied to problems of diffusion, crack propagation and crack tip stress analysis”

Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation

Thierry Goudon, Antoine Mellet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Fast optical tracking of diffusion in time-dependent environment of brain extracellular space

Hrabě, Jan

Similarity:

An improved version of the Integrative Optical Imaging (IOI) method for diffusion measurements in a geometrically complex environment of the brain extracellular space has been developed. We present a theory for this Fast Optical Tracking Of Diffusion (FOTOD) which incorporates a time-dependent effective diffusion coefficient in homogeneous anisotropic media with time-dependent nonspecific linear clearance. FOTOD can be used to measure rapid changes in extracellular diffusion permeability...

Speed-up of reaction-diffusion fronts by a line of fast diffusion

Henri Berestycki, Anne-Charline Coulon, Jean-Michel Roquejoffre, Luca Rossi (2013-2014)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading...