Speed-up of reaction-diffusion fronts by a line of fast diffusion

Henri Berestycki[1]; Anne-Charline Coulon[2]; Jean-Michel Roquejoffre[2]; Luca Rossi[3]

  • [1] École des Hautes Études en Sciences Sociales CAMS 54, bd Raspail F-75270 Paris France
  • [2] Institut de Mathématiques de Toulouse Université Paul Sabatier 118 route de Narbonne F-31062 Toulouse Cedex 4 France
  • [3] Dipartimento di Matematica Università degli Studi di Padova Via Trieste, 63 35121 Padova Italy

Séminaire Laurent Schwartz — EDP et applications (2013-2014)

  • Volume: 25, Issue: 13, page 1-25
  • ISSN: 2266-0607

Abstract

top
In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction of the line, but also in the plane. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. When the diffusion is the Laplacian, the global asymptotic speed of spreading on the line grows as the square root of the diffusion. In the other directions, the line of strong diffusion influences the spreading up to a critical angle, from which one recovers the classical spreading velocity. When the diffusion is the fractional Laplacian, the spreading on the line is exponential in time, and propagation in the plane is equivalent to that of a one-dimensional infinite planar front parallel to the line.

How to cite

top

Berestycki, Henri, et al. "Speed-up of reaction-diffusion fronts by a line of fast diffusion." Séminaire Laurent Schwartz — EDP et applications 25.13 (2013-2014): 1-25. <http://eudml.org/doc/275817>.

@article{Berestycki2013-2014,
abstract = {In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction of the line, but also in the plane. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. When the diffusion is the Laplacian, the global asymptotic speed of spreading on the line grows as the square root of the diffusion. In the other directions, the line of strong diffusion influences the spreading up to a critical angle, from which one recovers the classical spreading velocity. When the diffusion is the fractional Laplacian, the spreading on the line is exponential in time, and propagation in the plane is equivalent to that of a one-dimensional infinite planar front parallel to the line.},
affiliation = {École des Hautes Études en Sciences Sociales CAMS 54, bd Raspail F-75270 Paris France; Institut de Mathématiques de Toulouse Université Paul Sabatier 118 route de Narbonne F-31062 Toulouse Cedex 4 France; Institut de Mathématiques de Toulouse Université Paul Sabatier 118 route de Narbonne F-31062 Toulouse Cedex 4 France; Dipartimento di Matematica Università degli Studi di Padova Via Trieste, 63 35121 Padova Italy},
author = {Berestycki, Henri, Coulon, Anne-Charline, Roquejoffre, Jean-Michel, Rossi, Luca},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {spreading rate; accelerating fronts; Fisher-KPP dynamics; fractional diffusion; line of fast diffusion},
language = {eng},
number = {13},
pages = {1-25},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Speed-up of reaction-diffusion fronts by a line of fast diffusion},
url = {http://eudml.org/doc/275817},
volume = {25},
year = {2013-2014},
}

TY - JOUR
AU - Berestycki, Henri
AU - Coulon, Anne-Charline
AU - Roquejoffre, Jean-Michel
AU - Rossi, Luca
TI - Speed-up of reaction-diffusion fronts by a line of fast diffusion
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 25
IS - 13
SP - 1
EP - 25
AB - In these notes, we discuss a new model, proposed by H. Berestycki, J.-M. Roquejoffre and L. Rossi, to describe biological invasions in the plane when a strong diffusion takes place on a line. This model seems relevant to account for the effects of roads on the spreading of invasive species. In what follows, the diffusion on the line will either be modelled by the Laplacian operator, or the fractional Laplacian of order less than 1. Of interest to us is the asymptotic speed of spreading in the direction of the line, but also in the plane. For low diffusion, the line has no effect, whereas, past a threshold, the line enhances global diffusion in the plane and the propagation is directed by diffusion on the line. When the diffusion is the Laplacian, the global asymptotic speed of spreading on the line grows as the square root of the diffusion. In the other directions, the line of strong diffusion influences the spreading up to a critical angle, from which one recovers the classical spreading velocity. When the diffusion is the fractional Laplacian, the spreading on the line is exponential in time, and propagation in the plane is equivalent to that of a one-dimensional infinite planar front parallel to the line.
LA - eng
KW - spreading rate; accelerating fronts; Fisher-KPP dynamics; fractional diffusion; line of fast diffusion
UR - http://eudml.org/doc/275817
ER -

References

top
  1. D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974), volume 446, pages 5–49. Springer, Berlin, 1975. Zbl0325.35050MR427837
  2. D. G. Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population genetics. Adv. in Math., 30(1):33–76, 1978. Zbl0407.92014MR511740
  3. H. Berestycki, A.-C. Coulon, J.-M. Roquejoffre, and L. Rossi. Exponential front propagation in a Fisher-KPP model driven by a line of integral diffusion. in preparation, 2014. 
  4. H. Berestycki and F. Hamel. Generalized transition waves and their properties. Comm. Pure Appl. Math., 65:592–648, 2012. Zbl1248.35039MR2898886
  5. H. Berestycki and F. Hamel. Reaction-diffusion equations and propagation phenomena. Applied Mathematical Sciences, 2014. 
  6. H. Berestycki, F. Hamel, and N. Nadin. Asymptotic spreading in heterogeneous diffusive excitable media. J. Funct. Analysis, 255:2146–2189, 2008. Zbl1234.35033MR2473253
  7. H. Berestycki, F. Hamel, and N. Nadirashvili. The speed of propagation for KPP type problems. I. Periodic framework. J. European Math. Soc., 7:173–213, 2005. Zbl1142.35464MR2127993
  8. H. Berestycki, F. Hamel, and N. Nadirashvili. The speed of propagation for KPP type problems. II. General domains. J. Amer. Math. Soc., 23(1):1–34, 2010. Zbl1197.35073MR2552247
  9. H. Berestycki and N. Nadin. Spreading speeds for one-dimensional monostable reaction-diffusion equations. J. Math. Phys., 53(11), 2012. Zbl1282.35191MR3026564
  10. H. Berestycki, J.-M. Roquejoffre, and L. Rossi. The influence of a line with fast diffusion on Fisher-KPP propagation. J. Math. Biol., 66(4-5):743–766, 2013. Zbl1270.35264MR3020920
  11. H. Berestycki, J.-M. Roquejoffre, and L. Rossi. The shape of expansion induced by a line with fast diffusion in Fisher-KPP propagation. http://arxiv.org/abs/1402.1441, 2014. Zbl06571697MR3020920
  12. H. Berestycki and L. Rossi. Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains. Comm. Pure Appl. Math., 2014. Zbl1332.35243
  13. R. M. Blumenthal and R. K. Getoor. Some theorems on stable processes. Trans. Amer. Math. Soc., 95:263–273, 1960. Zbl0107.12401MR119247
  14. J.-M. Bony, P. Courrège, and P. Priouret. Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(fasc. 2):369–521 (1969), 1968. Zbl0181.11704MR245085
  15. M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Memoirs of the Amer. Math. Soc., 44, 1983. Zbl0517.60083MR705746
  16. X. Cabré, A.-C. Coulon, and J.-M. Roquejoffre. Propagation in Fisher-KPP type equations with fractional diffusion in periodic media. C. R. Math. Acad. Sci. Paris, 350(19-20):885–890, 2012. Zbl1253.35198MR2990897
  17. X. Cabré and J.-M. Roquejoffre. Front propagation in Fisher-KPP equations with fractional diffusion. C. R. Math. Acad. Sci. Paris, 347:1361–1366, 2009. Zbl1182.35072MR2588782
  18. X. Cabré and J.-M. Roquejoffre. The influence of fractional diffusion in Fisher-KPP equations. Comm. Math. Phys., 320(3):679–722, 2013. Zbl1307.35310MR3057187
  19. L. Caffarelli, S. Salsa, and L. Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math., 171(2):425–461, 2008. Zbl1148.35097MR2367025
  20. L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations, 32(7-9):1245–1260, 2007. Zbl1143.26002MR2354493
  21. P. Constantin and V. Vicol. Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal., 22:1289–1321, 2012. Zbl1256.35078MR2989434
  22. A.-C. Coulon. Fast front propagation in reaction-diffusion models with integral diffusion. Toulouse University PhD thesis, 2014. 
  23. A.-C. Coulon. The heat kernel in a parabolic model with a line of fast diffusion. in preparation, 2014. 
  24. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:355–369, 1937. Zbl63.1111.04
  25. J. Garnier. Accelerating solutions in integro-differential equations. SIAM J. Math. Anal., 43(4):1955–1974, 2011. Zbl1232.47058MR2831255
  26. J. Gartner. Location of wave fronts for the multi-dimensional KPP equation and Brownian first exit densities. Math. Nachr., 105:317–351, 1982. Zbl0501.60083MR670523
  27. J. Gartner and M. I. Freidlin. The propagation of concentration waves in periodic and random media. Dokl. Akad. Nauk SSSR, 249:521–525, 1979. Zbl0447.60060MR553200
  28. F. Hamel, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. A short proof of the logarithmic bramson correction in Fisher-KPP equations. Netw. Heterog. Media, pages 275–289, 2013. Zbl1275.35067MR3043938
  29. F. Hamel and L. Roques. Fast propagation for KPP equations with slowly decaying initial conditions. J. Differential Equations, 249(7):1726–1745, 2010. Zbl1213.35100MR2677813
  30. M.V. Hirsch. Stability and convergence in strongly monotone dynamical systems. J. Reine Angew. Math., 383:1–53, 1988. Zbl0624.58017MR921986
  31. A.N. Kolmogorov, I.G. Petrovskii, and N.S. Piskunov. Etude de l’équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique. Bjul. Moskowskogo Gos. Univ., 17:1–26, 1937. Zbl0018.32106
  32. R. Mancinelli, D. Vergni, and A. Vulpiani. Front propagation in reactive systems with anomalous diffusion. Phys. D, 185(3-4):175–195, 2003. Zbl1058.80004MR2017882
  33. H. Matano. Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems. J. Fac. Sci. Tokyo, 1984. Zbl0545.35042MR731522
  34. H.W. McKenzie, E.H. Merrill, R.J. Spiteri, and M.A. Lewis. How linear features alter predator movement and the functional response. Interface focus, 2(2):205–216, 2012. 
  35. G. Polya. On the zeros of an integral function represented by Fourier’s integral. Messenger of Math., 52:185–188, 1923. Zbl49.0219.02
  36. A. Siegfried. Itinéraires des contagions, épidémies et idéologies. A. Colin, Paris, 1960. 
  37. H.F. Weinberger. On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol., 45:511–548, 2002. Zbl1058.92036MR1943224
  38. F.A. Williams. Combustion theory. Benjamin Cummings, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.