Displaying similar documents to “Extended fractional calculus of variations, complexified geodesics and Wong's fractional equations on complex plane and on Lie algebroids”

Extended fractional calculus of variations, complexified geodesics and Wong’s fractional equations on complex plane and on Lie algebroids

Ahmad Rami El-Nabulsi (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this work, we communicate the topic of complex Lie algebroids based on the extended fractional calculus of variations in the complex plane. The complexified Euler-Lagrange geodesics and Wong’s fractional equations are derived. Many interesting consequences are explored.

Time fractional Kupershmidt equation: symmetry analysis and explicit series solution with convergence analysis

Astha Chauhan, Rajan Arora (2019)

Communications in Mathematics

Similarity:

In this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation...

Fractional derivative generalization of Noether’s theorem

Maryam Khorshidi, Mehdi Nadjafikhah, Hossein Jafari (2015)

Open Mathematics

Similarity:

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

Calculus of Variations with Classical and Fractional Derivatives

Odzijewicz, Tatiana, Torres, Delfim F. M. (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 49K05, 26A33 We give a proper fractional extension of the classical calculus of variations. Necessary optimality conditions of Euler-Lagrange type for variational problems containing both classical and fractional derivatives are proved. The fundamental problem of the calculus of variations with mixed integer and fractional order derivatives as well as isoperimetric problems are considered.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22 In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

On a Differential Equation with Left and Right Fractional Derivatives

Atanackovic, Teodor, Stankovic, Bogoljub (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05 We treat the fractional order differential equation that contains the left and right Riemann-Liouville fractional derivatives. Such equations arise as the Euler-Lagrange equation in variational principles with fractional derivatives. We reduce the problem to a Fredholm integral equation and construct a solution in the space of continuous functions. Two competing approaches in formulating differential equations...