The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements”

On spherical nilpotent orbits and beyond

Dmitri I. Panyushev (1999)

Annales de l'institut Fourier

Similarity:

We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s θ -groups. This yields a description...

The closure diagram for nilpotent orbits of the split real form of E8

Dragomir Đoković (2003)

Open Mathematics

Similarity:

Let 𝒪 1 and 𝒪 2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write 𝒪 1 𝒪 2 if 𝒪 2 is contained in the closure of 𝒪 1 . This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and...

Nilpotent complex structures.

Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)

RACSAM

Similarity:

Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.