Series of nilpotent orbits.
Landsberg, J.M., Manivel, Laurent, Westbury, Bruce W. (2004)
Experimental Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Landsberg, J.M., Manivel, Laurent, Westbury, Bruce W. (2004)
Experimental Mathematics
Similarity:
Charbonnel, Jean-Yves, Moreau, Anne (2010)
Documenta Mathematica
Similarity:
Dmitri I. Panyushev (1999)
Annales de l'institut Fourier
Similarity:
We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s -groups. This yields a description...
Đoković, Dragomir Ž. (2000)
Journal of Lie Theory
Similarity:
Jackson, Steven Glenn, Noël, Alfred G. (2006)
Experimental Mathematics
Similarity:
Đoković, Dragomir Ž. (2001)
Journal of Lie Theory
Similarity:
Dragomir Đoković (2003)
Open Mathematics
Similarity:
Let and be adjoint nilpotent orbits in a real semisimple Lie algebra. Write ≥ if is contained in the closure of . This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and...
Dragomir Đoković (2005)
Open Mathematics
Similarity:
Dan Barbasch, Allen Moy (1997)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)
RACSAM
Similarity:
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
Leonard F. Richardson (1987)
Colloquium Mathematicae
Similarity: