Displaying similar documents to “K-subanalytic rectilinearization and uniformization”

Extending analyticK-subanalytic functions

Artur Piękosz (2004)

Open Mathematics

Similarity:

Letg:U→ℝ (U open in ℝn) be an analytic and K-subanalytic (i. e. definable in ℝanK, whereK, the field of exponents, is any subfield ofℝ) function. Then the set of points, denoted Σ, whereg does not admit an analytic extension is K-subanalytic andg can be extended analytically to a neighbourhood of Ū.

Topological K-equivalence of analytic function-germs

Sérgio Alvarez, Lev Birbrair, João Costa, Alexandre Fernandes (2010)

Open Mathematics

Similarity:

We study the topological K-equivalence of function-germs (ℝn, 0) → (ℝ, 0). We present some special classes of piece-wise linear functions and prove that they are normal forms for equivalence classes with respect to topological K-equivalence for definable functions-germs. For the case n = 2 we present polynomial models for analytic function-germs.

Existence and uniqueness for dynamical unilateral contact with Coulomb friction : a model problem

Patrick Ballard, Stéphanie Basseville (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl. 2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class C . However, uniqueness is recovered provided that the data are analytic [Ballard, Arch....