Displaying similar documents to “Poincaré Inequalities for Mutually Singular Measures”

Inverse Limit Spaces Satisfying a Poincaré Inequality

Jeff Cheeger, Bruce Kleiner (2015)

Analysis and Geometry in Metric Spaces

Similarity:

We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of examples for which our conditions are satisfied. Included are known examples of PI spaces, such as...

Extension of Lipschitz functions defined on metric subspaces of homogeneous type.

Alexander Brudnyi, Yuri Brudnyi (2006)

Revista Matemática Complutense

Similarity:

If a metric subspace Mº of an arbitrary metric space M carries a doubling measure μ, then there is a simultaneous linear extension of all Lipschitz functions on Mº ranged in a Banach space to those on M. Moreover, the norm of this linear operator is controlled by logarithm of the doubling constant of μ.

A discrete version of the Brunn-Minkowski inequality and its stability

Michel Bonnefont (2009)

Annales mathématiques Blaise Pascal

Similarity:

In the first part of the paper, we define an approximated Brunn-Minkowski inequality which generalizes the classical one for metric measure spaces. Our new definition, based only on properties of the distance, allows also us to deal with discrete metric measure spaces. Then we show the stability of our new inequality under convergence of metric measure spaces. This result gives as corollary the stability of the classical Brunn-Minkowski inequality for geodesic spaces. The proof of this...

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

Similarity:

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Inverse Function Theorems and Jacobians over Metric Spaces

Luca Granieri (2014)

Analysis and Geometry in Metric Spaces

Similarity:

We present inversion results for Lipschitz maps f : Ω ⊂ ℝN → (Y, d) and stability of inversion for uniformly convergent sequences. These results are based on the Area Formula and on the l.s.c. of metric Jacobians.