Displaying similar documents to “Foliations of lightlike hypersurfaces and their physical interpretation”

Characterization of totally umbilic hypersurfaces in a space form by circles

Toshiaki Adachi, Sadahiro Maeda (2005)

Czechoslovak Mathematical Journal

Similarity:

In this paper we characterize totally umbilic hypersurfaces in a space form by a property of the extrinsic shape of circles on hypersurfaces. This characterization corresponds to characterizations of isoparametric hypersurfaces in a space form by properties of the extrinsic shape of geodesics due to Kimura-Maeda.

Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds

Mehri Nasehi (2016)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study parallel and totally geodesic hypersurfaces of two-step homogeneous nilmanifolds of dimension five. We give the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional centre never admit parallel hypersurfaces. Also we prove that the only two-step homogeneous nilmanifolds of dimension five which admit totally...

Real hypersurfaces in complex space forms concerned with the local symmetry

Seon Mi Lyu, Juan de Dios Pérez, Young Jin Suh (2007)

Czechoslovak Mathematical Journal

Similarity:

This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface M in complex space form M m ( 4 ϵ ) . In the second, we give a complete classification of real hypersurfaces in M m ( 4 ϵ ) which satisfy the above geometric facts.

Parallel hypersurfaces

Barbara Opozda, Udo Simon (2014)

Annales Polonici Mathematici

Similarity:

We investigate parallel hypersurfaces in the context of relative hypersurface geometry, in particular including the cases of Euclidean and Blaschke hypersurfaces. We describe the geometric relations between parallel hypersurfaces in terms of deformation operators, and we apply the results to the parallel deformation of special classes of hypersurfaces, e.g. quadrics and Weingarten hypersurfaces.