Displaying similar documents to “Operator preconditioning with efficient applications for nonlinear elliptic problems”

A comparison of some efficient numerical methods for a nonlinear elliptic problem

Balázs Kovács (2012)

Open Mathematics

Similarity:

The aim of this paper is to compare and realize three efficient iterative methods, which have mesh independent convergence, and to propose some improvements for them. We look for the numerical solution of a nonlinear model problem using FEM discretization with gradient and Newton type methods. Three numerical methods have been carried out, namely, the gradient, Newton and quasi-Newton methods. We have solved the model problem with these methods, we have investigated the differences between...

An element agglomeration nonlinear additive Schwarz preconditioned Newton method for unstructured finite element problems

Xiao-Chuan Cai, Leszek Marcinkowski, Vassilevski, Panayot S. (2005)

Applications of Mathematics

Similarity:

This paper extends previous results on nonlinear Schwarz preconditioning (Cai and Keyes 2002) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The nonlocal finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed...

Newton's iteration with a conjugate gradient based decomposition method for an elliptic PDE with a nonlinear boundary condition

Jonas Koko (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

Newton's iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each iteration of Newton's method, a conjugate gradient based decomposition method is applied to the matrix of the linearized system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization at each...

A semi-smooth Newton method for solving elliptic equations with gradient constraints

Roland Griesse, Karl Kunisch (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.

Efficient inexact Newton-like methods with application to problems of the deformation theory of plasticity

Radim Blaheta, Roman Kohut (1993)

Applications of Mathematics

Similarity:

Newton-like methods are considered with inexact correction computed by some inner iterative method. Composite iterative methods of this type are applied to the solution of nonlinear systems arising from the solution of nonlinear elliptic boundary value problems. Two main quastions are studied in this paper: the convergence of the inexact Newton-like methods and the efficient control of accuracy in computation of the inexact correction. Numerical experiments show the efficiency of the...