Displaying similar documents to “A comparison of the String Gradient Weighted Moving Finite Element method and a Parabolic Moving Mesh Partial Differential Equation method for solutions of partial differential equations”

Discretization methods with analytical characteristic methods for advection-diffusion-reaction equations and 2d applications

Jürgen Geiser (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Our studies are motivated by a desire to model long-time simulations of possible scenarios for a waste disposal. Numerical methods are developed for solving the arising systems of convection-diffusion-dispersion-reaction equations, and the received results of several discretization methods are presented. We concentrate on linear reaction systems, which can be solved analytically. In the numerical methods, we use large time-steps to achieve long simulation times of about 10 000 years. We...

Mesh r-adaptation for unilateral contact problems

Pierre Béal, Jonas Koko, Rachid Touzani (2002)

International Journal of Applied Mathematics and Computer Science

Similarity:

We present a mesh adaptation method by node movement for two-dimensional linear elasticity problems with unilateral contact. The adaptation is based on a hierarchical estimator on finite element edges and the node displacement techniques use an analogy of the mesh topology with a spring network. We show, through numerical examples, the efficiency of the present adaptation method.

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose...

On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow

Vít Dolejší, Miloslav Feistauer, Christoph Schwab (2002)

Mathematica Bohemica

Similarity:

The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—finite element method. Its advantage is the use of only one mesh (in contrast to the combined...

Finite element method on 3D mesh with layer structure - application on flow and transport in porous media

Hokr, Milan, Wasserbauer, Vladimír

Similarity:

We introduce a formulation of the finite element method (FEM) adapted to typical geometry of groundwater problems. The three-dimensional domain is discretized in the following way: the projection to the horizontal plane is a triangulation (unstructured mesh) and the mesh is composed of layers in the space. Thus there is need to define finite elements on trilateral prims. We show an alternative numerical solution of porous media (potential) flow by means of combining the FEM on 2D triangle...