Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger; Ricardo Ruiz; Kai Schneider; Mauricio Sepúlveda

ESAIM: Mathematical Modelling and Numerical Analysis (2008)

  • Volume: 42, Issue: 4, page 535-563
  • ISSN: 0764-583X

Abstract

top
We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate the computational efficiency together with the convergence properties.

How to cite

top

Bürger, Raimund, et al. "Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension." ESAIM: Mathematical Modelling and Numerical Analysis 42.4 (2008): 535-563. <http://eudml.org/doc/250404>.

@article{Bürger2008,
abstract = { We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate the computational efficiency together with the convergence properties. },
author = {Bürger, Raimund, Ruiz, Ricardo, Schneider, Kai, Sepúlveda, Mauricio},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Degenerate parabolic equation; adaptive multiresolution scheme; monotone scheme; upwind difference scheme; boundary conditions; entropy solution.; degenerate parabolic equation; adaptive multiresolution scheme; entropy solution; error bounds; adaptive mesh refinement},
language = {eng},
month = {5},
number = {4},
pages = {535-563},
publisher = {EDP Sciences},
title = {Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension},
url = {http://eudml.org/doc/250404},
volume = {42},
year = {2008},
}

TY - JOUR
AU - Bürger, Raimund
AU - Ruiz, Ricardo
AU - Schneider, Kai
AU - Sepúlveda, Mauricio
TI - Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2008/5//
PB - EDP Sciences
VL - 42
IS - 4
SP - 535
EP - 563
AB - We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order version is known to converge to an entropy solution of the problem. A particular feature of the method is the storage of the multiresolution representation of the solution in a graded tree, whose leaves are the non-uniform finite volumes on which the numerical divergence is eventually evaluated. Moreover using the L1 contraction of the discrete time evolution operator we derive the optimal choice of the threshold in the adaptive multiresolution method. Numerical examples illustrate the computational efficiency together with the convergence properties.
LA - eng
KW - Degenerate parabolic equation; adaptive multiresolution scheme; monotone scheme; upwind difference scheme; boundary conditions; entropy solution.; degenerate parabolic equation; adaptive multiresolution scheme; entropy solution; error bounds; adaptive mesh refinement
UR - http://eudml.org/doc/250404
ER -

References

top
  1. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer.10 (2001) 1–102.  Zbl1105.65349
  2. J. Bell, M.J. Berger, J. Saltzman and M. Welcome, Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput.15 (1994) 127–138.  Zbl0793.65072
  3. M.J. Berger and R.J. LeVeque, Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J. Numer. Anal.35 (1998) 2298–2316.  Zbl0921.65070
  4. M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys.53 (1984) 484–512.  Zbl0536.65071
  5. S. Berres, R. Bürger, K.H. Karlsen and E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math.64 (2003) 41–80.  Zbl1047.35071
  6. R. Bürger and K.H. Karlsen, On some upwind schemes for the phenomenological sedimentation-consolidation model. J. Eng. Math. 41 (2001) 145–166.  Zbl1128.76341
  7. R. Bürger and K.H. Karlsen, On a diffusively corrected kinematic-wave traffic model with changing road surface conditions. Math. Models Meth. Appl. Sci. 13 (2003) 1767–1799.  Zbl1055.35071
  8. R. Bürger, S. Evje and K.H. Karlsen, On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes. J. Math. Anal. Appl. 247 (2000) 517–556.  Zbl0961.35078
  9. R. Bürger, K.H. Karlsen, N.H. Risebro and J.D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 97 (2004) 25–65.  Zbl1053.76047
  10. R. Bürger, K.H. Karlsen and J.D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. 65 (2005) 882–940.  Zbl1089.76061
  11. R. Bürger, A. Coronel and M. Sepúlveda, A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modelling sedimentation-consolidation processes. Math. Comp.75 (2006) 91–112.  Zbl1082.65081
  12. R. Bürger, A. Coronel and M. Sepúlveda, On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels. Appl. Numer. Math.56 (2006) 1397–1417.  Zbl1103.65091
  13. R. Bürger, A. Kozakevicius and M. Sepúlveda, Multiresolution schemes for strongly degenerate parabolic equations in one space dimension. Numer. Meth. Partial Diff. Equ. 23 (2007) 706–730.  Zbl1114.65120
  14. R. Bürger, R. Ruiz, K. Schneider and M. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux. J. Eng. Math.60 (2008) 365–385.  Zbl1137.65393
  15. J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Rat. Mech. Anal. 147 (1999) 269–361.  Zbl0935.35056
  16. G. Chiavassa, R. Donat and S. Müller, Multiresolution-based adaptive schemes for hyperbolic conservation laws, in Adaptive Mesh Refinement-Theory and Applications, T. Plewa, T. Linde and V.G. Weiss Eds., Lect. Notes Computat. Sci. Engrg.41, Springer-Verlag, Berlin (2003) 137–159.  Zbl1065.65118
  17. A. Cohen, S. Kaber, S. Müller and M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp.72 (2002) 183–225.  Zbl1010.65035
  18. M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comp.34 (1980) 1–21.  Zbl0423.65052
  19. P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Springer-Verlag, New York (2002).  Zbl1001.65071
  20. A.C. Dick, Speed/flow relationships within an urban area. Traffic Eng. Control8 (1966) 393–396.  
  21. M. Domingues, O. Roussel and K. Schneider, An adaptive multiresolution method for parabolic PDEs with time step control. ESAIM: Proc.16 (2007) 181–194.  Zbl1206.65228
  22. M. Domingues, S. Gomes, O. Roussel and K. Schneider, An adaptive multiresolution scheme with local time-stepping for evolutionary PDEs. J. Comput. Phys.227 (2008) 3758–3780.  Zbl1139.65060
  23. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws. Math. Comp.36 (1981) 321–351.  Zbl0469.65067
  24. M.S. Espedal and K.H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting methods, in Filtration in Porous Media and Industrial Application, M.S. Espedal, A. Fasano and A. Mikelić Eds., Springer-Verlag, Berlin (2000) 9–77.  Zbl1077.76546
  25. S. Evje and K.H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal.37 (2000) 1838–1860.  Zbl0985.65100
  26. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math.92 (2002) 41–82.  Zbl1005.65099
  27. E. Fehlberg, Low order classical Runge-Kutta formulas with step size control and their application to some heat transfer problems. Computing6 (1970) 61–71.  Zbl0217.53001
  28. E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996).  Zbl0860.65075
  29. H. Greenberg, An analysis of traffic flow. Oper. Res.7 (1959) 79–85.  
  30. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems. 2nd Edn., Springer-Verlag, Berlin (1993).  Zbl0789.65048
  31. A. Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math.48 (1995) 1305–1342.  Zbl0860.65078
  32. A. Harten, J.M. Hyman and P.D. Lax, On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math.29 (1976) 297–322.  Zbl0351.76070
  33. K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN35 (2001) 239–269.  Zbl1032.76048
  34. K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal.22 (2002) 623–664.  Zbl1014.65073
  35. K.H. Karlsen, N.H. Risebro and J.D. Towers, L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vid. Selsk. (2003) 1–49.  Zbl1036.35104
  36. S.N. Kružkov, First order quasilinear equations in several independent space variables. Math. USSR Sb.10 (1970) 217–243.  
  37. N.N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first order quasilinear equation. USSR Comp. Math. Math. Phys.16 (1976) 105–119.  Zbl0381.35015
  38. M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A229 (1955) 317–345.  Zbl0064.20906
  39. A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal.41 (2003) 2262–2293.  Zbl1058.35127
  40. S. Müller, Adaptive Multiscale Schemes for Conservation Laws. Springer-Verlag, Berlin (2003).  Zbl1016.76004
  41. S. Müller and Y. Stiriba, Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comp.30 (2007) 493–531.  Zbl1110.76037
  42. P. Nelson, Traveling-wave solutions of the diffusively corrected kinematic-wave model. Math. Comp. Modelling35 (2002) 561–579.  Zbl0994.90031
  43. P.I. Richards, Shock waves on the highway. Oper. Res.4 (1956) 42–51.  
  44. O. Roussel and K. Schneider, An adaptive multiresolution method for combustion problems: Application to flame ball-vortex interaction. Comput. Fluids34 (2005) 817–831.  Zbl1134.80304
  45. O. Roussel, K. Schneider, A. Tsigulin and H. Bockhorn, A conservative fully adaptive multiresolution algorithm for parabolic conservation laws. J. Comput. Phys.188 (2003) 493–523.  Zbl1022.65093
  46. R. Ruiz, Métodos de Multiresolución y su Aplicación a un Problema de Ingeniería. Tesis para optar al título de Ingeniero Matemático, Universidad de Concepción, Chile (2005).  
  47. C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor, in Lecture Notes in Mathematics1697, A. Quarteroni Ed., Springer-Verlag, Berlin (1998) 325–432.  
  48. J. Stoer and R. Bulirsch, Numerische Mathematik 2. 3rd Edn., Springer-Verlag, Berlin (1990).  
  49. E. Süli and D.F. Mayers, An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003).  Zbl1033.65001
  50. J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal.38 (2000) 681–698.  Zbl0972.65060
  51. J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal.39 (2001) 1197–1218.  Zbl1055.65104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.