Groups with finite conjugacy classes of subnormal subgroups
Carlo Casolo (1989)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Carlo Casolo (1989)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Leonid A. Kurdachenko, Howard Smith (1998)
Publicacions Matemàtiques
Similarity:
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
John C. Lennox, Derek J. S. Robinson (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Patrizia Longobardi, Mercede Maj, Howard Smith (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Enrico Jabara (2006)
Matematički Vesnik
Similarity:
Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
B.A.F. Wehrfritz (2009)
Open Mathematics
Similarity:
We consider the existence or otherwise of canonical divisible normal subgroups of groups in general. We present more counterexamples than positive results. These counterexamples constitute the substantive part of this paper.
Derek J. S. Robinson (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Howard Smith, James Wiegold (1994)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Silvana Franciosi, Francesco de Giovanni (1995)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
It is proved that a soluble residually finite minimax group is finite-by-nilpotent if and only if it has only finitely many maximal subgroups which are not normal.