Displaying similar documents to “On well-covered graphs of odd girth 7 or greater”

On integral sum graphs with a saturated vertex

Zhibo Chen (2010)

Czechoslovak Mathematical Journal

Similarity:

As introduced by F. Harary in 1994, a graph G is said to be an i n t e g r a l s u m g r a p h if its vertices can be given a labeling f with distinct integers so that for any two distinct vertices u and v of G , u v is an edge of G if and only if f ( u ) + f ( v ) = f ( w ) for some vertex w in G . We prove that every integral sum graph with a saturated vertex, except the complete graph K 3 , has edge-chromatic number equal to its maximum degree. (A vertex of a graph G is said to be if it is adjacent to every...

A bound on the k -domination number of a graph

Lutz Volkmann (2010)

Czechoslovak Mathematical Journal

Similarity:

Let G be a graph with vertex set V ( G ) , and let k 1 be an integer. A subset D V ( G ) is called a if every vertex v V ( G ) - D has at least k neighbors in D . The k -domination number γ k ( G ) of G is the minimum cardinality of a k -dominating set in G . If G is a graph with minimum degree δ ( G ) k + 1 , then we prove that γ k + 1 ( G ) | V ( G ) | + γ k ( G ) 2 . In addition, we present a characterization of a special class of graphs attaining equality in this inequality.

Restrained domination in unicyclic graphs

Johannes H. Hattingh, Ernst J. Joubert, Marc Loizeaux, Andrew R. Plummer, Lucas van der Merwe (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V-S is adjacent to a vertex in S and to a vertex in V-S. The restrained domination number of G, denoted by γ r ( G ) , is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, then γ r ( U ) n / 3 , and provide a characterization of graphs achieving this bound.

Cores and shells of graphs

Allan Bickle (2013)

Mathematica Bohemica

Similarity:

The k -core of a graph G , C k ( G ) , is the maximal induced subgraph H G such that δ ( G ) k , if it exists. For k > 0 , the k -shell of a graph G is the subgraph of G induced by the edges contained in the k -core and not contained in the ( k + 1 ) -core. The core number of a vertex is the largest value for k such that v C k ( G ) , and the maximum core number of a graph, C ^ ( G ) , is the maximum of the core numbers of the vertices of G . A graph G is k -monocore if C ^ ( G ) = δ ( G ) = k . This paper discusses some basic results on the structure of k -cores and...

New edge neighborhood graphs

Ali A. Ali, Salar Y. Alsardary (1997)

Czechoslovak Mathematical Journal

Similarity:

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .